
Convergence of a distributed asynchronous learning
vector quantization algorithm.

ENS ULM, NOVEMBER 2010

Benoît Patra (UPMC-Paris VI/Lokad) 1 / 59

Outline.

1 Introduction.

2 Vector quantization, convergence of the CLVQ.

3 General distributed asynchronous algorithm.

4 Distributed Asynchronous Learning Vector Quantization (DALVQ).

5 Bibliography

Benoît Patra (UPMC-Paris VI/Lokad) 2 / 59

Introduction.

Distributed computing.

Distributed algorithms arise in a wide range of applications:
including telecommunications, scientific computing...

Parallelization: most promising way to allow more computing
resources. Building faster serial computers: increasingly
expensive + strikes physical limits (transmission speed,
miniaturization).

Distributed large scale algorithms encounter problems:
communication delays (latency, bandwidth), the lack of efficient
shared memory.

Benoît Patra (UPMC-Paris VI/Lokad) 3 / 59

Introduction.

Distributed computing.

Distributed algorithms arise in a wide range of applications:
including telecommunications, scientific computing...

Parallelization: most promising way to allow more computing
resources. Building faster serial computers: increasingly
expensive + strikes physical limits (transmission speed,
miniaturization).

Distributed large scale algorithms encounter problems:
communication delays (latency, bandwidth), the lack of efficient
shared memory.

Benoît Patra (UPMC-Paris VI/Lokad) 3 / 59

Introduction.

Distributed computing.

Distributed algorithms arise in a wide range of applications:
including telecommunications, scientific computing...

Parallelization: most promising way to allow more computing
resources. Building faster serial computers: increasingly
expensive + strikes physical limits (transmission speed,
miniaturization).

Distributed large scale algorithms encounter problems:
communication delays (latency, bandwidth), the lack of efficient
shared memory.

Benoît Patra (UPMC-Paris VI/Lokad) 3 / 59

Introduction.

Figure: Chicago data center for Microsoft Windows Azure (Paas).

Benoît Patra (UPMC-Paris VI/Lokad) 4 / 59

Introduction.

Clustering algorithms.

Outstanding role in datamining: scientific data exploration,
information retrieval, marketing, text mining, computational
biology...

Clustering: division of data into groups of similar objects.

Representing data by clusters: loses certain fine details but
achieves simplification.

Probabilistic POV: find a simplified representation of the
underlying distribution of the data.

Benoît Patra (UPMC-Paris VI/Lokad) 5 / 59

Introduction.

Clustering algorithms.

Outstanding role in datamining: scientific data exploration,
information retrieval, marketing, text mining, computational
biology...

Clustering: division of data into groups of similar objects.

Representing data by clusters: loses certain fine details but
achieves simplification.

Probabilistic POV: find a simplified representation of the
underlying distribution of the data.

Benoît Patra (UPMC-Paris VI/Lokad) 5 / 59

Introduction.

Figure: Division of data into similar (colored) groups: clustering.

Benoît Patra (UPMC-Paris VI/Lokad) 6 / 59

Vector quantization, convergence of the CLVQ.

Distortion.

Data has a distribution µ: Borel probability measure on Rd (with a
second order moment).

Model this distribution by κ vectors of Rd : the number of
prototypes (centroids), w ∈

(
Rd)κ.

Objective: minimization of the distortion C, find w◦ s.t.

w◦ ∈ argmin
w∈(Rd)

κ
C(w),

where, for a quantization scheme w = (w1, . . . ,wκ) ∈
(
Rd)κ,

C(w) ,
1
2

∫
G

min
1≤`≤κ

‖z− w`‖2 dµ(z).

G: closed convex hull of supp (µ).

Benoît Patra (UPMC-Paris VI/Lokad) 7 / 59

Vector quantization, convergence of the CLVQ.

Distortion.

Data has a distribution µ: Borel probability measure on Rd (with a
second order moment).

Model this distribution by κ vectors of Rd : the number of
prototypes (centroids), w ∈

(
Rd)κ.

Objective: minimization of the distortion C, find w◦ s.t.

w◦ ∈ argmin
w∈(Rd)

κ
C(w),

where, for a quantization scheme w = (w1, . . . ,wκ) ∈
(
Rd)κ,

C(w) ,
1
2

∫
G

min
1≤`≤κ

‖z− w`‖2 dµ(z).

G: closed convex hull of supp (µ).

Benoît Patra (UPMC-Paris VI/Lokad) 7 / 59

Vector quantization, convergence of the CLVQ.

Distortion.

Data has a distribution µ: Borel probability measure on Rd (with a
second order moment).

Model this distribution by κ vectors of Rd : the number of
prototypes (centroids), w ∈

(
Rd)κ.

Objective: minimization of the distortion C, find w◦ s.t.

w◦ ∈ argmin
w∈(Rd)

κ
C(w),

where, for a quantization scheme w = (w1, . . . ,wκ) ∈
(
Rd)κ,

C(w) ,
1
2

∫
G

min
1≤`≤κ

‖z− w`‖2 dµ(z).

G: closed convex hull of supp (µ).

Benoît Patra (UPMC-Paris VI/Lokad) 7 / 59

Vector quantization, convergence of the CLVQ.

µ is only known through n independent random variables z1, . . . , zn.

Much attention has been devoted to the consistency of the
quantization scheme provided by the empirical minimizers

w◦n = argmin
w∈(Rd)

κ
Cn(w)

where

Cn(w) =
1
2

∫
G

min
1≤`≤κ

‖z− w`‖2 dµn(z)

=
1

2n

n∑
i=1

min
1≤`≤κ

‖zi − w`‖2,

where

µn ,
1
n

n∑
i=1

δzi .

Benoît Patra (UPMC-Paris VI/Lokad) 8 / 59

Vector quantization, convergence of the CLVQ.

µ is only known through n independent random variables z1, . . . , zn.

Much attention has been devoted to the consistency of the
quantization scheme provided by the empirical minimizers

w◦n = argmin
w∈(Rd)

κ
Cn(w)

where

Cn(w) =
1
2

∫
G

min
1≤`≤κ

‖z− w`‖2 dµn(z)

=
1

2n

n∑
i=1

min
1≤`≤κ

‖zi − w`‖2,

where

µn ,
1
n

n∑
i=1

δzi .

Benoît Patra (UPMC-Paris VI/Lokad) 8 / 59

Vector quantization, convergence of the CLVQ.

Pollard [1, 2] , Abaya et al. [3]:

C(w◦n)
a.s.−−−→

n→∞
min

w∈(Rd)
κ

C(w).

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a
computationally hard problem: complexity exponential in κ and d .

Untractable for most of the practical applications.

Here, investigate effective methods that produce accurate
quantizations with data samples.

Benoît Patra (UPMC-Paris VI/Lokad) 9 / 59

Vector quantization, convergence of the CLVQ.

Pollard [1, 2] , Abaya et al. [3]:

C(w◦n)
a.s.−−−→

n→∞
min

w∈(Rd)
κ

C(w).

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a
computationally hard problem: complexity exponential in κ and d .

Untractable for most of the practical applications.

Here, investigate effective methods that produce accurate
quantizations with data samples.

Benoît Patra (UPMC-Paris VI/Lokad) 9 / 59

Vector quantization, convergence of the CLVQ.

Pollard [1, 2] , Abaya et al. [3]:

C(w◦n)
a.s.−−−→

n→∞
min

w∈(Rd)
κ

C(w).

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a
computationally hard problem: complexity exponential in κ and d .

Untractable for most of the practical applications.

Here, investigate effective methods that produce accurate
quantizations with data samples.

Benoît Patra (UPMC-Paris VI/Lokad) 9 / 59

Vector quantization, convergence of the CLVQ.

Pollard [1, 2] , Abaya et al. [3]:

C(w◦n)
a.s.−−−→

n→∞
min

w∈(Rd)
κ

C(w).

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a
computationally hard problem: complexity exponential in κ and d .

Untractable for most of the practical applications.

Here, investigate effective methods that produce accurate
quantizations with data samples.

Benoît Patra (UPMC-Paris VI/Lokad) 9 / 59

Vector quantization, convergence of the CLVQ.

Assumption on the distribution.

We will make the following assumption.

Assumption (Compact supported density)
µ has a bounded density (w.r.t. Lebesgue measure) whose support is
the compact convex set G.

This assumption is similar to the peak power constraint (see Chou [5]
and Linder [9]).

Benoît Patra (UPMC-Paris VI/Lokad) 10 / 59

Vector quantization, convergence of the CLVQ.

Voronoï tesselations.

Notation:
The set of all κ-tuples of G is denoted Gκ.
Dκ∗ =

{
w ∈

(
Rd)κ |w` 6= wk if and only if ` 6= k

}
.

∀w ∈ Dκ∗ ,

C(w) =
1
2

κ∑
`=1

∫
W`(w)

‖z− w`‖2 dµ(z).

Benoît Patra (UPMC-Paris VI/Lokad) 11 / 59

Vector quantization, convergence of the CLVQ.

Voronoï tesselations.

Notation:
The set of all κ-tuples of G is denoted Gκ.
Dκ∗ =

{
w ∈

(
Rd)κ |w` 6= wk if and only if ` 6= k

}
.

∀w ∈ Dκ∗ ,

C(w) =
1
2

κ∑
`=1

∫
W`(w)

‖z− w`‖2 dµ(z).

Benoît Patra (UPMC-Paris VI/Lokad) 11 / 59

Vector quantization, convergence of the CLVQ.

Definition

Let w ∈
(
Rd)κ, the Voronoï tessellation of G related to w is the family

of open sets {W`(w)}1≤`≤κ defined as follows:
If w ∈ Dκ∗ , for all 1 ≤ ` ≤ κ,

W`(w) =

{
v ∈ G

∣∣∣∣ ‖w` − v‖ < min
k 6=`
‖wk − v‖

}
.

If w ∈
(
Rd)κ \ Dκ∗ , for all 1 ≤ ` ≤ κ,

if ` = min {k |wk = w`},

W`(w) =

{
v ∈ G

∣∣∣∣ ‖w` − v‖ < min
wk 6=w`

‖wk − v‖
}
,

otherwise, W`(w) = ∅.

Benoît Patra (UPMC-Paris VI/Lokad) 12 / 59

Vector quantization, convergence of the CLVQ.

Definition

Let w ∈
(
Rd)κ, the Voronoï tessellation of G related to w is the family

of open sets {W`(w)}1≤`≤κ defined as follows:
If w ∈ Dκ∗ , for all 1 ≤ ` ≤ κ,

W`(w) =

{
v ∈ G

∣∣∣∣ ‖w` − v‖ < min
k 6=`
‖wk − v‖

}
.

If w ∈
(
Rd)κ \ Dκ∗ , for all 1 ≤ ` ≤ κ,

if ` = min {k |wk = w`},

W`(w) =

{
v ∈ G

∣∣∣∣ ‖w` − v‖ < min
wk 6=w`

‖wk − v‖
}
,

otherwise, W`(w) = ∅.

Benoît Patra (UPMC-Paris VI/Lokad) 12 / 59

Vector quantization, convergence of the CLVQ.

Voronoï tesselations 2D.

Figure: Voronoï tesselations of a vector of
(
R2
)15.

Benoît Patra (UPMC-Paris VI/Lokad) 13 / 59

Vector quantization, convergence of the CLVQ.

CLVQ

Competitive Learning Vector Quantization (CLVQ).

Data arrive over time while the execution of the algorithm and their
characteristics are unknown until their arrival times.
On-line algorithm: uses each item of the training sequence at
each update.

Data stream z1, z2,

Initialization with κ-prototypes w(0) = (w1(0), . . . ,wκ(0)).
For each t = 0, . . .
`0 s.t. w`0(t) nearest prototype of zt+1 among (w1(t), . . . ,wκ(t))

w`0(t + 1) = w`0(t) + εt+1(zt+1 − w`0(t)),

εt ∈ (0,1).

Benoît Patra (UPMC-Paris VI/Lokad) 14 / 59

Vector quantization, convergence of the CLVQ.

CLVQ

Competitive Learning Vector Quantization (CLVQ).

Data arrive over time while the execution of the algorithm and their
characteristics are unknown until their arrival times.
On-line algorithm: uses each item of the training sequence at
each update.

Data stream z1, z2,

Initialization with κ-prototypes w(0) = (w1(0), . . . ,wκ(0)).
For each t = 0, . . .
`0 s.t. w`0(t) nearest prototype of zt+1 among (w1(t), . . . ,wκ(t))

w`0(t + 1) = w`0(t) + εt+1(zt+1 − w`0(t)),

εt ∈ (0,1).

Benoît Patra (UPMC-Paris VI/Lokad) 14 / 59

Vector quantization, convergence of the CLVQ.

Video (short).

Benoît Patra (UPMC-Paris VI/Lokad) 15 / 59

Vector quantization, convergence of the CLVQ.

Benoît Patra (UPMC-Paris VI/Lokad) 16 / 59

slowCLVQ.swf
Media File (application/x-shockwave-flash)

Vector quantization, convergence of the CLVQ.

Video (long).

Benoît Patra (UPMC-Paris VI/Lokad) 17 / 59

Vector quantization, convergence of the CLVQ.

Benoît Patra (UPMC-Paris VI/Lokad) 18 / 59

fastCLVQ.swf
Media File (application/x-shockwave-flash)

Vector quantization, convergence of the CLVQ.

Regularity of the distortion.

Theorem (Pagès [1].)

C is continuously differentiable at every w = (w1, . . . ,wκ) ∈ Dκ∗ .
∀1 ≤ ` ≤ κ,

∇`C(w) =

∫
W`(w)

(w` − z) dµ(z).

Benoît Patra (UPMC-Paris VI/Lokad) 19 / 59

Vector quantization, convergence of the CLVQ.

Local observation of the gradient.

Definition

For any z ∈ Rd and w ∈ Dκ∗ , define function H by its `-th component,

H`(z,w) =

{
z− w` if z ∈W`(w)

0 otherwise.

If random variable z ∼ µ, the next equality holds for all w ∈ Dκ∗ ,

E {H(z,w)} = ∇C(w).

Thus, we extend the definition, for all w ∈
(
Rd)κ,

h(w) , E {H(z,w)} .

Benoît Patra (UPMC-Paris VI/Lokad) 20 / 59

Vector quantization, convergence of the CLVQ.

Local observation of the gradient.

Definition

For any z ∈ Rd and w ∈ Dκ∗ , define function H by its `-th component,

H`(z,w) =

{
z− w` if z ∈W`(w)

0 otherwise.

If random variable z ∼ µ, the next equality holds for all w ∈ Dκ∗ ,

E {H(z,w)} = ∇C(w).

Thus, we extend the definition, for all w ∈
(
Rd)κ,

h(w) , E {H(z,w)} .

Benoît Patra (UPMC-Paris VI/Lokad) 20 / 59

Vector quantization, convergence of the CLVQ.

Local observation of the gradient.

Definition

For any z ∈ Rd and w ∈ Dκ∗ , define function H by its `-th component,

H`(z,w) =

{
z− w` if z ∈W`(w)

0 otherwise.

If random variable z ∼ µ, the next equality holds for all w ∈ Dκ∗ ,

E {H(z,w)} = ∇C(w).

Thus, we extend the definition, for all w ∈
(
Rd)κ,

h(w) , E {H(z,w)} .

Benoît Patra (UPMC-Paris VI/Lokad) 20 / 59

Vector quantization, convergence of the CLVQ.

Stochastic gradient optimization.

Minimize C: gradient descent procedure w := w − ε∇C(w).

∇C(w) is unknown, use H(z,w) instead.

w(t + 1) = w(t)− εt+1H (zt+1,w(t)) (CLVQ),

w(0) ∈
◦
Gκ ∩ Dκ∗ and z1, z2 . . . are independent observations distributed

according to the probability measure µ.

Usual constraints on the decreasing speed of the sequence of steps
{εt}∞t=0 ∈ (0,1),

1
∑∞

t=0 εt =∞.
2
∑∞

t=0 ε
2
t <∞.

Benoît Patra (UPMC-Paris VI/Lokad) 21 / 59

Vector quantization, convergence of the CLVQ.

Stochastic gradient optimization.

Minimize C: gradient descent procedure w := w − ε∇C(w).

∇C(w) is unknown, use H(z,w) instead.

w(t + 1) = w(t)− εt+1H (zt+1,w(t)) (CLVQ),

w(0) ∈
◦
Gκ ∩ Dκ∗ and z1, z2 . . . are independent observations distributed

according to the probability measure µ.

Usual constraints on the decreasing speed of the sequence of steps
{εt}∞t=0 ∈ (0,1),

1
∑∞

t=0 εt =∞.
2
∑∞

t=0 ε
2
t <∞.

Benoît Patra (UPMC-Paris VI/Lokad) 21 / 59

Vector quantization, convergence of the CLVQ.

Stochastic gradient optimization.

Minimize C: gradient descent procedure w := w − ε∇C(w).

∇C(w) is unknown, use H(z,w) instead.

w(t + 1) = w(t)− εt+1H (zt+1,w(t)) (CLVQ),

w(0) ∈
◦
Gκ ∩ Dκ∗ and z1, z2 . . . are independent observations distributed

according to the probability measure µ.

Usual constraints on the decreasing speed of the sequence of steps
{εt}∞t=0 ∈ (0,1),

1
∑∞

t=0 εt =∞.
2
∑∞

t=0 ε
2
t <∞.

Benoît Patra (UPMC-Paris VI/Lokad) 21 / 59

Vector quantization, convergence of the CLVQ.

Stochastic gradient optimization.

Minimize C: gradient descent procedure w := w − ε∇C(w).

∇C(w) is unknown, use H(z,w) instead.

w(t + 1) = w(t)− εt+1H (zt+1,w(t)) (CLVQ),

w(0) ∈
◦
Gκ ∩ Dκ∗ and z1, z2 . . . are independent observations distributed

according to the probability measure µ.

Usual constraints on the decreasing speed of the sequence of steps
{εt}∞t=0 ∈ (0,1),

1
∑∞

t=0 εt =∞.
2
∑∞

t=0 ε
2
t <∞.

Benoît Patra (UPMC-Paris VI/Lokad) 21 / 59

Vector quantization, convergence of the CLVQ.

Troubles.

On the distortion:

C is not a convex function.
‖C(w)‖9∞ as ‖w‖ → ∞.

On its gradient:

h is singular at {Dκ∗ .
h is zero on wide zone outside Gκ.

Benoît Patra (UPMC-Paris VI/Lokad) 22 / 59

Vector quantization, convergence of the CLVQ.

Troubles.

On the distortion:

C is not a convex function.
‖C(w)‖9∞ as ‖w‖ → ∞.

On its gradient:

h is singular at {Dκ∗ .
h is zero on wide zone outside Gκ.

Benoît Patra (UPMC-Paris VI/Lokad) 22 / 59

Vector quantization, convergence of the CLVQ.

What can be expected?

w(t) 9 w◦ = argmin
w∈Gκ

C(w), almost surely (a.s.).

Proposition (Pagès [1].)

argmin
w∈(Rd)

κ
C(w) ⊂ argminloc

w∈Gκ
C(w) ⊂

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

w(t) a.s.−−−→
t→∞

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

Benoît Patra (UPMC-Paris VI/Lokad) 23 / 59

Vector quantization, convergence of the CLVQ.

What can be expected?

w(t) 9 w◦ = argmin
w∈Gκ

C(w), almost surely (a.s.).

Proposition (Pagès [1].)

argmin
w∈(Rd)

κ
C(w) ⊂ argminloc

w∈Gκ
C(w) ⊂

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

w(t) a.s.−−−→
t→∞

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

Benoît Patra (UPMC-Paris VI/Lokad) 23 / 59

Vector quantization, convergence of the CLVQ.

What can be expected?

w(t) 9 w◦ = argmin
w∈Gκ

C(w), almost surely (a.s.).

Proposition (Pagès [1].)

argmin
w∈(Rd)

κ
C(w) ⊂ argminloc

w∈Gκ
C(w) ⊂

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

w(t) a.s.−−−→
t→∞

◦
Gκ ∩{∇C = 0} ∩ Dκ∗ .

Benoît Patra (UPMC-Paris VI/Lokad) 23 / 59

Vector quantization, convergence of the CLVQ.

Theorem (G-Lemma, Fort and Pagès [2].)
Assume that:

1 {w(t)}∞t=0 and {h (w(t))}∞t=0 are bounded with probability 1.
2 The series

∑∞
t=0 εt+1 (H(zt+1,w(t))− h(w(t))) converge a.s. in(

Rd)κ.
3 There exists a l.s.c. nonnegative function G :

(
Rd)κ → R+ s.t.

∞∑
s=0

εs+1G(w(s)) <∞ a.s..

Then there exists a connected component Ξ of {G = 0} s.t.

lim
t→∞

dist (w(t),Ξ) = 0 a.s..

Benoît Patra (UPMC-Paris VI/Lokad) 24 / 59

Vector quantization, convergence of the CLVQ.

A suitable G:
For every w ∈ Gκ,

Ĝ(w) , lim inf
v∈Gκ∩Dκ∗ ,v→w

‖∇C(v)‖2 .

Ĝ is a nonnegative l.s.c. function on Gκ.

Benoît Patra (UPMC-Paris VI/Lokad) 25 / 59

Vector quantization, convergence of the CLVQ.

A suitable G:
For every w ∈ Gκ,

Ĝ(w) , lim inf
v∈Gκ∩Dκ∗ ,v→w

‖∇C(v)‖2 .

Ĝ is a nonnegative l.s.c. function on Gκ.

Benoît Patra (UPMC-Paris VI/Lokad) 25 / 59

Vector quantization, convergence of the CLVQ.

Theorem (Pagès [1].)

Under assumption [Compact supported density], on the event{
lim inf
t→∞

dist
(
w(t), {Dκ∗

)
> 0

}
,

dist (w(t),Ξ∞) = 0 a.s. as t →∞,

where Ξ∞ is some connected component of {∇C = 0}.

Remarks:
Asymptotically parted component.
No satisfactory convergence result is provided without this
assumption.
However, some studies have been carried out by Pagès [1].

Benoît Patra (UPMC-Paris VI/Lokad) 26 / 59

Vector quantization, convergence of the CLVQ.

Theorem (Pagès [1].)

Under assumption [Compact supported density], on the event{
lim inf
t→∞

dist
(
w(t), {Dκ∗

)
> 0

}
,

dist (w(t),Ξ∞) = 0 a.s. as t →∞,

where Ξ∞ is some connected component of {∇C = 0}.

Remarks:
Asymptotically parted component.
No satisfactory convergence result is provided without this
assumption.
However, some studies have been carried out by Pagès [1].

Benoît Patra (UPMC-Paris VI/Lokad) 26 / 59

General distributed asynchronous algorithm.

Parallelization.

Why?

On line algorithm have impressive convergence properties.

Such algorithms are entirely sequential in their nature.

Thus, CLVQ algorithm is too slow on large data sets or with high
dimension data.

Benoît Patra (UPMC-Paris VI/Lokad) 27 / 59

General distributed asynchronous algorithm.

Parallelization.

Why?

On line algorithm have impressive convergence properties.

Such algorithms are entirely sequential in their nature.

Thus, CLVQ algorithm is too slow on large data sets or with high
dimension data.

Benoît Patra (UPMC-Paris VI/Lokad) 27 / 59

General distributed asynchronous algorithm.

Parallelization.

Why?

On line algorithm have impressive convergence properties.

Such algorithms are entirely sequential in their nature.

Thus, CLVQ algorithm is too slow on large data sets or with high
dimension data.

Benoît Patra (UPMC-Paris VI/Lokad) 27 / 59

General distributed asynchronous algorithm.

Parallelization.

We introduce a model that brings together the CLVQ and the
comprehensive theory of asynchronous parallel linear algorithms
(Tsitsiklis [3]).

Resulting model will be called Distributed Asynchronous Learning
Vector Quantization (DALVQ).

DALVQ parallelizes several executions of CLVQ concurrently at
different processors while the results of theses latter algorithms
are broadcasted through the distributed framework in efficient
way.

Our parallel DALVQ algorithm is able to process, for a given time
span, much more data than a (single processor) execution of the
CLVQ procedure.

Benoît Patra (UPMC-Paris VI/Lokad) 28 / 59

General distributed asynchronous algorithm.

Parallelization.

We introduce a model that brings together the CLVQ and the
comprehensive theory of asynchronous parallel linear algorithms
(Tsitsiklis [3]).

Resulting model will be called Distributed Asynchronous Learning
Vector Quantization (DALVQ).

DALVQ parallelizes several executions of CLVQ concurrently at
different processors while the results of theses latter algorithms
are broadcasted through the distributed framework in efficient
way.

Our parallel DALVQ algorithm is able to process, for a given time
span, much more data than a (single processor) execution of the
CLVQ procedure.

Benoît Patra (UPMC-Paris VI/Lokad) 28 / 59

General distributed asynchronous algorithm.

Parallelization.

We introduce a model that brings together the CLVQ and the
comprehensive theory of asynchronous parallel linear algorithms
(Tsitsiklis [3]).

Resulting model will be called Distributed Asynchronous Learning
Vector Quantization (DALVQ).

DALVQ parallelizes several executions of CLVQ concurrently at
different processors while the results of theses latter algorithms
are broadcasted through the distributed framework in efficient
way.

Our parallel DALVQ algorithm is able to process, for a given time
span, much more data than a (single processor) execution of the
CLVQ procedure.

Benoît Patra (UPMC-Paris VI/Lokad) 28 / 59

General distributed asynchronous algorithm.

Parallelization.

We introduce a model that brings together the CLVQ and the
comprehensive theory of asynchronous parallel linear algorithms
(Tsitsiklis [3]).

Resulting model will be called Distributed Asynchronous Learning
Vector Quantization (DALVQ).

DALVQ parallelizes several executions of CLVQ concurrently at
different processors while the results of theses latter algorithms
are broadcasted through the distributed framework in efficient
way.

Our parallel DALVQ algorithm is able to process, for a given time
span, much more data than a (single processor) execution of the
CLVQ procedure.

Benoît Patra (UPMC-Paris VI/Lokad) 28 / 59

General distributed asynchronous algorithm.

Distributed framework.

We dispose of a distributed architecture with M computing entities
called processors/workers.

Each processor is labeled by a natural number i ∈ {1, . . . ,M}.

Each processor i has a buffer (local memory) where the current
version of the iteration is kept:

{
w i(t)

}∞
t=0,

(
Rd)κ-valued

sequence.

Benoît Patra (UPMC-Paris VI/Lokad) 29 / 59

General distributed asynchronous algorithm.

Distributed framework.

We dispose of a distributed architecture with M computing entities
called processors/workers.

Each processor is labeled by a natural number i ∈ {1, . . . ,M}.

Each processor i has a buffer (local memory) where the current
version of the iteration is kept:

{
w i(t)

}∞
t=0,

(
Rd)κ-valued

sequence.

Benoît Patra (UPMC-Paris VI/Lokad) 29 / 59

General distributed asynchronous algorithm.

Distributed framework.

We dispose of a distributed architecture with M computing entities
called processors/workers.

Each processor is labeled by a natural number i ∈ {1, . . . ,M}.

Each processor i has a buffer (local memory) where the current
version of the iteration is kept:

{
w i(t)

}∞
t=0,

(
Rd)κ-valued

sequence.

Benoît Patra (UPMC-Paris VI/Lokad) 29 / 59

General distributed asynchronous algorithm.

Distributed framework.

Processor 2

Data

Processor 1

Data

Processor 4

Data

Processor 3

Data

Benoît Patra (UPMC-Paris VI/Lokad) 30 / 59

General distributed asynchronous algorithm.

Independent.

Benoît Patra (UPMC-Paris VI/Lokad) 31 / 59

General distributed asynchronous algorithm.

Independent

Benoît Patra (UPMC-Paris VI/Lokad) 32 / 59

cliIndepcropedVQ.avi
Media File (video/avi)

General distributed asynchronous algorithm.

A generic descent term:

w(t + 1) = w(t) +−εtH (zt+1,w(t))︸ ︷︷ ︸
,s(t)

.

Benoît Patra (UPMC-Paris VI/Lokad) 33 / 59

General distributed asynchronous algorithm.

Parallelization.

Basic parallelization.
For all 1 ≤ i ≤ M, where M is the number of processors.

w i(t + 1) =
M∑

j=1

ai,j(t)w j(t) + si(t).

Where the
{

ai,j(t)
}M

j=1 are some weights (convex combination).

For many t ≥ 0,

ai,j(t) =

{
1 if i = j
0 otherwise.

For such values: local iterations

w i(t + 1) = w i(t) + si(t)

Benoît Patra (UPMC-Paris VI/Lokad) 34 / 59

General distributed asynchronous algorithm.

Synchronization effects:

Synchronizations required in this model.

We should take into account communication delays and design an
asynchronous algorithm.

Local algorithms do not have to wait at preset points for some
messages to become available.

Processors compute faster and execute more iterations than
others. Communication delays are allowed to be substantial and
unpredictable.

Messages can be deliver out of order (a different order than the
one in which they were transmitted).

Benoît Patra (UPMC-Paris VI/Lokad) 35 / 59

General distributed asynchronous algorithm.

Advantages

Reduction of the synchronization penalty: speed advantage over a
synchronous execution.

For a potential industrialization, asynchronism has a greater
implementation flexibility.

Benoît Patra (UPMC-Paris VI/Lokad) 36 / 59

General distributed asynchronous algorithm.

Advantages

Reduction of the synchronization penalty: speed advantage over a
synchronous execution.

For a potential industrialization, asynchronism has a greater
implementation flexibility.

Benoît Patra (UPMC-Paris VI/Lokad) 36 / 59

General distributed asynchronous algorithm.

The Tsitsikils’s asynchronous model.

General Distributed Asynchronous System (GDAS), Tsitsklis [3, 4]:

w i(t + 1) =
M∑

j=1

ai,j(t)w j(τ i,j(t)) + si(t).

0 ≤ τ i,j(t) ≤ t : deterministic (but unknown) time instant.

t − τ i,j(t): communication delays.

τ i,i(t) = t .

Benoît Patra (UPMC-Paris VI/Lokad) 37 / 59

General distributed asynchronous algorithm.

The Tsitsikils’s asynchronous model.

General Distributed Asynchronous System (GDAS), Tsitsklis [3, 4]:

w i(t + 1) =
M∑

j=1

ai,j(t)w j(τ i,j(t)) + si(t).

0 ≤ τ i,j(t) ≤ t : deterministic (but unknown) time instant.

t − τ i,j(t): communication delays.

τ i,i(t) = t .

Benoît Patra (UPMC-Paris VI/Lokad) 37 / 59

General distributed asynchronous algorithm.

Global
time reference

Benoît Patra (UPMC-Paris VI/Lokad) 38 / 59

General distributed asynchronous algorithm.

Model agreement.

Agreement algorithm.

x i(t + 1) =
M∑

j=1

ai,j(t)x j(τ i,j(t)),

x i(0) ∈
(
Rd)κ, for all i .

Remark:
Similar to (GDAS) but with si(t) = 0 for all t , i .

Is there (or at least what are the conditions to ensure) an asymptotical
consensus between the processors/workers?

Benoît Patra (UPMC-Paris VI/Lokad) 39 / 59

General distributed asynchronous algorithm.

Model agreement.

Agreement algorithm.

x i(t + 1) =
M∑

j=1

ai,j(t)x j(τ i,j(t)),

x i(0) ∈
(
Rd)κ, for all i .

Remark:
Similar to (GDAS) but with si(t) = 0 for all t , i .

Is there (or at least what are the conditions to ensure) an asymptotical
consensus between the processors/workers?

Benoît Patra (UPMC-Paris VI/Lokad) 39 / 59

General distributed asynchronous algorithm.

Model agreement.

Agreement algorithm.

x i(t + 1) =
M∑

j=1

ai,j(t)x j(τ i,j(t)),

x i(0) ∈
(
Rd)κ, for all i .

Remark:
Similar to (GDAS) but with si(t) = 0 for all t , i .

Is there (or at least what are the conditions to ensure) an asymptotical
consensus between the processors/workers?

Benoît Patra (UPMC-Paris VI/Lokad) 39 / 59

General distributed asynchronous algorithm.

Assumptions 1.

Assumption (Bounded communication delays)

There exists a positive integer B1 s.t.

t − B1 < τ i,j(t) ≤ t ,

for all (i , j) ∈ {1, . . . ,M}2 and all t ≥ 0.

Assumption (Convex combination and threshold)

There exists α > 0 s.t. the following three properties hold:
1 ai,i(t) ≥ α, i ∈ {1, . . . ,M} and t ≥ 0,
2 ai,j(t) ∈ {0} ∪ [α,1], (i , j) ∈ {1, . . . ,M}2 and t ≥ 0,
3
∑M

j=1 ai,j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 40 / 59

General distributed asynchronous algorithm.

Assumptions 1.

Assumption (Bounded communication delays)

There exists a positive integer B1 s.t.

t − B1 < τ i,j(t) ≤ t ,

for all (i , j) ∈ {1, . . . ,M}2 and all t ≥ 0.

Assumption (Convex combination and threshold)

There exists α > 0 s.t. the following three properties hold:
1 ai,i(t) ≥ α, i ∈ {1, . . . ,M} and t ≥ 0,
2 ai,j(t) ∈ {0} ∪ [α,1], (i , j) ∈ {1, . . . ,M}2 and t ≥ 0,
3
∑M

j=1 ai,j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 40 / 59

General distributed asynchronous algorithm.

Assumption 2.

Definition (Communication graph)

Let us fix t ≥ 0, the communication graph (V,E(t)) is defined by
the set of vertices V is formed by the set of processors,
V = {1, . . . ,M},
the set of edges E(t) is defined via the relationship

(j , i) ∈ E(t) if and only if ai,j(t) > 0.

Assumption (Graph connectivity)

The graph (V,∪s≥tE(s)) is strongly connected for all t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 41 / 59

General distributed asynchronous algorithm.

Assumption 2.

Definition (Communication graph)

Let us fix t ≥ 0, the communication graph (V,E(t)) is defined by
the set of vertices V is formed by the set of processors,
V = {1, . . . ,M},
the set of edges E(t) is defined via the relationship

(j , i) ∈ E(t) if and only if ai,j(t) > 0.

Assumption (Graph connectivity)

The graph (V,∪s≥tE(s)) is strongly connected for all t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 41 / 59

General distributed asynchronous algorithm.

Assumption 3 and Assumption 4.

Assumption (Bounded communication intervals)

If i communicates with j an infinite number of times, then there is a
positive integer B2 such that, for all t ≥ 0,
(i , j) ∈ E(t) ∪ E(t + 1) ∪ . . . ∪ E(t + B2 − 1).

Assumption (Symmetry)

There exists some B3 > 0 such that, whenever (i , j) ∈ E(t), there
exists some τ that satisfies |t − τ | < B3 and (j , i) ∈ E(τ).

Benoît Patra (UPMC-Paris VI/Lokad) 42 / 59

General distributed asynchronous algorithm.

Assumption 3 and Assumption 4.

Assumption (Bounded communication intervals)

If i communicates with j an infinite number of times, then there is a
positive integer B2 such that, for all t ≥ 0,
(i , j) ∈ E(t) ∪ E(t + 1) ∪ . . . ∪ E(t + B2 − 1).

Assumption (Symmetry)

There exists some B3 > 0 such that, whenever (i , j) ∈ E(t), there
exists some τ that satisfies |t − τ | < B3 and (j , i) ∈ E(τ).

Benoît Patra (UPMC-Paris VI/Lokad) 42 / 59

General distributed asynchronous algorithm.

Until the end of the presentation either (AsY)1 or (AsY)2 holds

(AsY)1 ≡


Assumption [Bounded communication delays]
Assumption [Convex combination and threshold]
Assumption [Graph connectivity]
Assumption [Bounded communication intervals]

(AsY)2 ≡


Assumption [Bounded communication delays]
Assumption [Convex combination and threshold]
Assumption [Graph connectivity]
Assumption [Symmetry]

Benoît Patra (UPMC-Paris VI/Lokad) 43 / 59

General distributed asynchronous algorithm.

Agreement theorem.

Agreement algorithm.

x i(t + 1) =
M∑

j=1

ai,j(t)x j(τ i,j(t)),

Theorem (Blondel et al. [5])

Under assumptions (AsY)1 or (AsY)2 there is a vector c? ∈
(
Rd)κ

(independent of i) s.t.,

lim
t→∞

∥∥∥x i(t)− c?
∥∥∥ = 0.

Even more, there exists ρ ∈ [0,1) and L > 0, s.t.,∥∥∥x i(t)− x i(τ)
∥∥∥ ≤ Lρt−τ ,

for every t ≥ τ ≥ 0.
Benoît Patra (UPMC-Paris VI/Lokad) 44 / 59

General distributed asynchronous algorithm.

Agreement vector.

The previous theorem is useful for the study of (GDAS):

w i(t + 1) =
M∑

j=1

ai,j(t)w j(τ i,j(t)) + si(t).

For any t ′ ≥ 0, if computations with descent terms have stopped after
t ′, i.e, si(t) = 0 for all t ≥ t ′ and all i .

w i(t) −−−→
t→∞

w?(t ′) for all i ∈ {1, . . . ,M}.

Benoît Patra (UPMC-Paris VI/Lokad) 45 / 59

General distributed asynchronous algorithm.

Global
time reference

Averaging and computation
with descent terms
(general distributed

asynchronous algorithm).

Only averaging
(agreement algorithm).

Benoît Patra (UPMC-Paris VI/Lokad) 46 / 59

General distributed asynchronous algorithm.

Agreement vector sequence.

Agreement vector sequence: {w?(t)}∞t=0.
The true definition is more complex.

Remark:
The agreement vector w? satisfies, for all t ≥ 0,

w?(t + 1) = w?(t) +
M∑

j=1

φj(t)sj(t), (1)

φj(t) ∈ [0,1].

Although the agreement vector sequence is unknown it will be a useful
tool for the convergence analysis of (GDAS).

Benoît Patra (UPMC-Paris VI/Lokad) 47 / 59

General distributed asynchronous algorithm.

Agreement vector sequence.

Agreement vector sequence: {w?(t)}∞t=0.
The true definition is more complex.

Remark:
The agreement vector w? satisfies, for all t ≥ 0,

w?(t + 1) = w?(t) +
M∑

j=1

φj(t)sj(t), (1)

φj(t) ∈ [0,1].

Although the agreement vector sequence is unknown it will be a useful
tool for the convergence analysis of (GDAS).

Benoît Patra (UPMC-Paris VI/Lokad) 47 / 59

General distributed asynchronous algorithm.

Agreement vector sequence.

Agreement vector sequence: {w?(t)}∞t=0.
The true definition is more complex.

Remark:
The agreement vector w? satisfies, for all t ≥ 0,

w?(t + 1) = w?(t) +
M∑

j=1

φj(t)sj(t), (1)

φj(t) ∈ [0,1].

Although the agreement vector sequence is unknown it will be a useful
tool for the convergence analysis of (GDAS).

Benoît Patra (UPMC-Paris VI/Lokad) 47 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Distributed Asynchronous Learning Vector
Quantization (DALVQ).

(GDAS) with the descent terms si ,

si(t) =

{
−εi

tH
(
zi

t+1,w
i(t)
)

if t ∈ T i

0 otherwise.

Notation:
T i : set of time instant where the version

{
w i(t)

}∞
t=0 is updated

with descent terms. T i deterministic but do not need to be known
a priori for the execution.{

zi
t
}∞

t=0 iid sequences of r.v. of law µ.

Ft , σ
(
zi

s, for all s ≤ t and 1 ≤ i ≤ M
)
.

Benoît Patra (UPMC-Paris VI/Lokad) 48 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Distributed Asynchronous Learning Vector
Quantization (DALVQ).

(GDAS) with the descent terms si ,

si(t) =

{
−εi

tH
(
zi

t+1,w
i(t)
)

if t ∈ T i

0 otherwise.

Notation:
T i : set of time instant where the version

{
w i(t)

}∞
t=0 is updated

with descent terms. T i deterministic but do not need to be known
a priori for the execution.{

zi
t
}∞

t=0 iid sequences of r.v. of law µ.

Ft , σ
(
zi

s, for all s ≤ t and 1 ≤ i ≤ M
)
.

Benoît Patra (UPMC-Paris VI/Lokad) 48 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

DALVQ.

Benoît Patra (UPMC-Paris VI/Lokad) 49 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

DALVQ

Benoît Patra (UPMC-Paris VI/Lokad) 50 / 59

clipAsyncVQ.avi
Media File (video/avi)

Distributed Asynchronous Learning Vector Quantization (DALVQ).

To be continued.

We assume that the sequences εi
t satisfy the following conditions:

Assumption (Decreasing steps)

There exist two constants K1, K2 s.t., for all i and all t ≥ 0,

K1

t ∨ 1
≤ εi

t ≤
K2

t ∨ 1
.

Assumption (Non idle)∑M
j=1 1t∈T j > 0

Benoît Patra (UPMC-Paris VI/Lokad) 51 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

To be continued.

We assume that the sequences εi
t satisfy the following conditions:

Assumption (Decreasing steps)

There exist two constants K1, K2 s.t., for all i and all t ≥ 0,

K1

t ∨ 1
≤ εi

t ≤
K2

t ∨ 1
.

Assumption (Non idle)∑M
j=1 1t∈T j > 0

Benoît Patra (UPMC-Paris VI/Lokad) 51 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

The recursion formula of agreement vector writes,

w?(t + 1) = w?(t) +
M∑

j=1

φj(t)sj(t).

Using the function h,

h(w?(t)) = E {H (zt+1,w?(t)) | Ft}

and
h(w j(t)) = E

{
H
(

zt+1,w j(t)
)
| Ft

}
, for all j.

Benoît Patra (UPMC-Paris VI/Lokad) 52 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Set,

ε?t ,
1
2

M∑
j=1

1t∈T jφj(t)εj
t

and

∆M1
t ,

1
2

M∑
j=1

1t∈T jφj(t)εj
t

(
h(w?(t))− h(w j(t))

)
,

and,

∆M2
t ,

1
2

M∑
j=1

1t∈T jφj(t)εj
t

(
h(w j(t))− H

(
zj

t+1,w
j(t)
))
.

The recursion (1) writes,

w?(t + 1) = w?(t)− ε?t h(w?(t)) + ∆M1
t + ∆M2

t .

Benoît Patra (UPMC-Paris VI/Lokad) 53 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Set,

ε?t ,
1
2

M∑
j=1

1t∈T jφj(t)εj
t

and

∆M1
t ,

1
2

M∑
j=1

1t∈T jφj(t)εj
t

(
h(w?(t))− h(w j(t))

)
,

and,

∆M2
t ,

1
2

M∑
j=1

1t∈T jφj(t)εj
t

(
h(w j(t))− H

(
zj

t+1,w
j(t)
))
.

The recursion (1) writes,

w?(t + 1) = w?(t)− ε?t h(w?(t)) + ∆M1
t + ∆M2

t .

Benoît Patra (UPMC-Paris VI/Lokad) 53 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Theorem (Asynchronous G-Lemma)
Assume that one has,

1
∑∞

t=0 ε
?
t =∞ and ε?t −−−→t→∞

0.

2 The sequences {w?(t)}∞t=0 and {h(w?(t))}∞t=0 are bounded with
probability 1.

3 The series
∑∞

t=0 ∆M(1)
t and

∑∞
t=0 ∆M(2)

t converge a.s. in
(
Rd)κ.

4 There exists a l.s.c. map G :
(
Rd)κ −→ R+, s.t.

∞∑
t=0

ε?t+1G (w?(t)) <∞, a.s..

Then there exists a connected component Ξ of {G = 0} s.t.

lim
t→∞

dist (w?(t),Ξ) = 0, a.s..

Benoît Patra (UPMC-Paris VI/Lokad) 54 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Ĝ(w) , lim inf
v∈Gκ∩Dκ∗ ,v→w

‖∇C(v)‖2 .

Assumption (Trajectories in Gκ)

P
{

w j(t) ∈ Gκ
}

= 1, ∀j ∀t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 55 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Ĝ(w) , lim inf
v∈Gκ∩Dκ∗ ,v→w

‖∇C(v)‖2 .

Assumption (Trajectories in Gκ)

P
{

w j(t) ∈ Gκ
}

= 1, ∀j ∀t ≥ 0.

Benoît Patra (UPMC-Paris VI/Lokad) 55 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Lemma

Assume that Assumptions [Decreasing steps] and [Trajectories in Gκ]
are satisfied. Then, for all t ≥ 0

‖w?(t)− w i(t)‖ ≤
√
κM diam(G)AK2θt , a.s.,

where θt ,
∑t−1

τ=−1
1
τ∨1ρ

t−τ .

Remark
Under assumptions [Trajectories in Gκ],

1 w?(t)− w i(t) a.s.−−→ 0 as t →∞,
2 w j(t)− w i(t) a.s.−−→ 0 as t →∞ for i 6= j .

Benoît Patra (UPMC-Paris VI/Lokad) 56 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

Lemma

Assume that Assumptions [Decreasing steps] and [Trajectories in Gκ]
are satisfied. Then, for all t ≥ 0

‖w?(t)− w i(t)‖ ≤
√
κM diam(G)AK2θt , a.s.,

where θt ,
∑t−1

τ=−1
1
τ∨1ρ

t−τ .

Remark
Under assumptions [Trajectories in Gκ],

1 w?(t)− w i(t) a.s.−−→ 0 as t →∞,
2 w j(t)− w i(t) a.s.−−→ 0 as t →∞ for i 6= j .

Benoît Patra (UPMC-Paris VI/Lokad) 56 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

The Asynchronous Theorem.

Assumption (Parted component assumption)
1 P {w?(t) ∈ Dκ∗} = 1, for all t ≥ 0.
2 P

{
lim inft→∞ dist

(
w?(t), {Dκ∗

)}
= 1.

Theorem (Asynchronous Theorem)
If assumptions [Trajectories in Gκ], [Parted component assumption]
hold then,

w?(t) a.s.−−−→
t→∞

Ξ∞,

and,
w i(t) a.s.−−−→

t→∞
Ξ∞, for all processors i.

Where Ξ∞ is some connected component of {∇C = 0}.

Benoît Patra (UPMC-Paris VI/Lokad) 57 / 59

Distributed Asynchronous Learning Vector Quantization (DALVQ).

The Asynchronous Theorem.

Assumption (Parted component assumption)
1 P {w?(t) ∈ Dκ∗} = 1, for all t ≥ 0.
2 P

{
lim inft→∞ dist

(
w?(t), {Dκ∗

)}
= 1.

Theorem (Asynchronous Theorem)
If assumptions [Trajectories in Gκ], [Parted component assumption]
hold then,

w?(t) a.s.−−−→
t→∞

Ξ∞,

and,
w i(t) a.s.−−−→

t→∞
Ξ∞, for all processors i.

Where Ξ∞ is some connected component of {∇C = 0}.

Benoît Patra (UPMC-Paris VI/Lokad) 57 / 59

Bibliography

Bibliography

G. Pagès, “A space vector quantization for numerical integration,” Journal
of Applied and Computational Mathematics, vol. 89, 1997.

J.-C. Fort and G. Pagès, “Convergence of stochastic algorithms: From
the kushner-clark theorem to the lyapounov functional method,”
Advances in Applied Probability, vol. 28, 1996.

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” Automatic
Control, IEEE Transactions on, vol. 31, 1986.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. USA: Prentice-Hall, Inc., 1989.

V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Convergence in
multiagent coordination, consensus, and flocking,” Decision and Control,
2005 and 2005 European Control Conference, 2005.

Benoît Patra (UPMC-Paris VI/Lokad) 58 / 59

Bibliography

D. Pollard, “Quantization and the method of k-means,” IEEE Transactions on Information Theory, 1982.

——, “Stong consistency of k-means clustering,” The annals of statistics, vol. 9, 1981.

E. A. Abaya and G. L. Wise, “Convergence of vector quantizers with applications to optimal quantization,” SIAM Journal on
Applied Mathematics, 1984.

D. Pollard, “A central limit theorem for k -means clustering,” The annals of probability, vol. 28, 1982.

P. A. Chou, “The distortion of vector quantizers trained on n vectors decreases to the optimum at op(1/n),” IEEE
transactions on information theory, vol. 8, 1994.

Z. K. Linder T., Lugosi G., “Rates of convergence in the source coding theorem, in empirical quantizer design, and in
universal lossy source coding,” IEEE Transactions on Information Theory, vol. 40.

L. G. Bartlett P.L., Linder T., “The minimax distortion redundancy in empirical quantizer design,” IEEE Transactions on
Information Theory, vol. 44, 1998.

M. Inaba, N. Katoh, and H. Imai, “Applications of weighted voronoi diagrams and randomization to variance-based
k-clustering,” in SCG ’94: Proceedings of the tenth annual symposium on Computational geometry. USA: ACM, 1994.

L. Thomas, “On the training distortion of vector quantizers,” IEEE Transactions on Information Theory, vol. 46, 2000.

Benoît Patra (UPMC-Paris VI/Lokad) 59 / 59

	Introduction.
	Vector quantization, convergence of the CLVQ.
	General distributed asynchronous algorithm.
	Distributed Asynchronous Learning Vector Quantization (DALVQ).
	Bibliography

