Convergence of a distributed asynchronous learning vector quantization algorithm.

ENS ULM, NOVEMBER 2010

Benoît Patra (UPMC-Paris VI/Lokad)

Introduction.

Vector quantization, convergence of the CLVQ.

3 General distributed asynchronous algorithm.

Distributed Asynchronous Learning Vector Quantization (DALVQ).

5 Bibliography

Distributed computing.

• Distributed algorithms arise in a wide range of applications: including telecommunications, scientific computing...

- Parallelization: most promising way to allow more computing resources. Building faster serial computers: increasingly expensive + strikes physical limits (transmission speed, miniaturization).
- Distributed large scale algorithms encounter problems: communication delays (latency, bandwidth), the lack of efficient shared memory.

Distributed computing.

- Distributed algorithms arise in a wide range of applications: including telecommunications, scientific computing...
- Parallelization: most promising way to allow more computing resources. Building faster serial computers: increasingly expensive + strikes physical limits (transmission speed, miniaturization).
- Distributed large scale algorithms encounter problems: communication delays (latency, bandwidth), the lack of efficient shared memory.

Distributed computing.

- Distributed algorithms arise in a wide range of applications: including telecommunications, scientific computing...
- Parallelization: most promising way to allow more computing resources. Building faster serial computers: increasingly expensive + strikes physical limits (transmission speed, miniaturization).
- Distributed large scale algorithms encounter problems: communication delays (latency, bandwidth), the lack of efficient shared memory.

Figure: Chicago data center for Microsoft Windows Azure (Paas).

Clustering algorithms.

- Outstanding role in datamining: scientific data exploration, information retrieval, marketing, text mining, computational biology...
- Clustering: division of data into groups of similar objects.
- Representing data by clusters: loses certain fine details but achieves simplification.
- Probabilistic POV: find a simplified representation of the underlying distribution of the data.

Clustering algorithms.

- Outstanding role in datamining: scientific data exploration, information retrieval, marketing, text mining, computational biology...
- Clustering: division of data into groups of similar objects.
- Representing data by clusters: loses certain fine details but achieves simplification.
- Probabilistic POV: find a simplified representation of the underlying distribution of the data.

Figure: Division of data into similar (colored) groups: clustering.

Distortion.

- Data has a distribution μ: Borel probability measure on R^d (with a second order moment).
- Model this distribution by κ vectors of ℝ^d: the number of prototypes (centroids), w ∈ (ℝ^d)^κ.

Objective: minimization of the distortion C, find w° s.t.

 $w^{\circ} \in \operatorname*{argmin}_{w \in (\mathbb{R}^d)^{\kappa}} C(w),$

where, for a quantization scheme $w = (w_1, \ldots, w_\kappa) \in (\mathbb{R}^d)^{\kappa}$,

$$C(\mathbf{w}) \triangleq \frac{1}{2} \int_{\mathcal{G}} \min_{1 \leq \ell \leq \kappa} \|\mathbf{z} - \mathbf{w}_{\ell}\|^2 d\mu(\mathbf{z}).$$

 \mathcal{G} : closed convex hull of supp (μ).

Distortion.

- Data has a distribution μ: Borel probability measure on R^d (with a second order moment).
- Model this distribution by κ vectors of ℝ^d: the number of prototypes (centroids), w ∈ (ℝ^d)^κ.

Objective: minimization of the distortion C, find w° s.t.

 $\mathbf{w}^{\circ} \in \operatorname*{argmin}_{\mathbf{w} \in \left(\mathbb{R}^{d}
ight)^{\kappa}} C(\mathbf{w}),$

where, for a quantization scheme $w = (w_1, \ldots, w_\kappa) \in (\mathbb{R}^d)^{\kappa}$,

$$C(\boldsymbol{w}) \triangleq \frac{1}{2} \int_{\mathcal{G}} \min_{1 \leq \ell \leq \kappa} \|\boldsymbol{z} - \boldsymbol{w}_{\ell}\|^2 d\mu(\boldsymbol{z}).$$

 \mathcal{G} : closed convex hull of supp (μ).

Distortion.

- Data has a distribution μ: Borel probability measure on ℝ^d (with a second order moment).
- Model this distribution by κ vectors of ℝ^d: the number of prototypes (centroids), w ∈ (ℝ^d)^κ.

Objective: minimization of the distortion C, find w° s.t.

 $\mathbf{w}^{\circ} \in \operatorname*{argmin}_{\mathbf{w} \in \left(\mathbb{R}^{d}
ight)^{\kappa}} C(\mathbf{w}),$

where, for a quantization scheme $w = (w_1, \ldots, w_{\kappa}) \in (\mathbb{R}^d)^{\kappa}$,

$$C(\mathbf{w}) \triangleq rac{1}{2} \int_{\mathcal{G}} \min_{1 \leq \ell \leq \kappa} \left\| \mathbf{z} - \mathbf{w}_{\ell} \right\|^2 d\mu(\mathbf{z}).$$

 \mathcal{G} : closed convex hull of supp (μ).

Vector quantization, convergence of the CLVQ.

 μ is only known through *n* independent random variables z_1, \ldots, z_n .

Much attention has been devoted to the consistency of the quantization scheme provided by the empirical minimizers

$$w_n^\circ = \operatorname*{argmin}_{w \in (\mathbb{R}^d)^\kappa} C_n(w)$$

where

$$C_n(\boldsymbol{w}) = \frac{1}{2} \int_{\mathcal{G}} \min_{1 \le \ell \le \kappa} \|\boldsymbol{z} - \boldsymbol{w}_\ell\|^2 \, d\mu_n(\boldsymbol{z})$$
$$= \frac{1}{2n} \sum_{i=1}^n \min_{1 \le \ell \le \kappa} \|\boldsymbol{z}_i - \boldsymbol{w}_\ell\|^2,$$

where

$$\mu_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{z}_i}.$$

Vector quantization, convergence of the CLVQ.

 μ is only known through *n* independent random variables z_1, \ldots, z_n .

Much attention has been devoted to the consistency of the quantization scheme provided by the empirical minimizers

$$w_n^\circ = \operatorname*{argmin}_{w \in (\mathbb{R}^d)^\kappa} C_n(w)$$

where

$$C_n(\mathbf{w}) = \frac{1}{2} \int_{\mathcal{G}} \min_{1 \le \ell \le \kappa} \|\mathbf{z} - \mathbf{w}_\ell\|^2 d\mu_n(\mathbf{z})$$
$$= \frac{1}{2n} \sum_{i=1}^n \min_{1 \le \ell \le \kappa} \|\mathbf{z}_i - \mathbf{w}_\ell\|^2,$$

where

$$\mu_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{z}_i}.$$

$$C(\mathbf{w}_n^{\circ}) \xrightarrow[n \to \infty]{a.s.} \min_{\mathbf{w} \in (\mathbb{R}^d)^{\kappa}} C(\mathbf{w}).$$

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a computationally hard problem: complexity exponential in κ and d.

Untractable for most of the practical applications.

$$C(\mathbf{w}_n^{\circ}) \xrightarrow[n \to \infty]{a.s.} \min_{\mathbf{w} \in (\mathbb{R}^d)^{\kappa}} C(\mathbf{w}).$$

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a computationally hard problem: complexity exponential in κ and d.

Untractable for most of the practical applications.

$$C(\mathbf{w}_n^{\circ}) \xrightarrow[n \to \infty]{a.s.} \min_{\mathbf{w} \in (\mathbb{R}^d)^{\kappa}} C(\mathbf{w}).$$

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a computationally hard problem: complexity exponential in κ and d.

Untractable for most of the practical applications.

$$C(\mathbf{w}_n^{\circ}) \xrightarrow[n \to \infty]{a.s.} \min_{\mathbf{w} \in (\mathbb{R}^d)^{\kappa}} C(\mathbf{w}).$$

Rates of convergence, non asymptotic performance bounds: Pollard

[4], Chou [5], Linder et al. [6], Bartlett et al [7], etc...

Inaba et al. [8] minimization of the empirical distortion is a computationally hard problem: complexity exponential in κ and d.

Untractable for most of the practical applications.

Assumption on the distribution.

We will make the following assumption.

Assumption (Compact supported density)

 μ has a bounded density (w.r.t. Lebesgue measure) whose support is the compact convex set $\mathcal{G}.$

This assumption is similar to the peak power constraint (see Chou [5] and Linder [9]).

Voronoï tesselations.

Notation:

- The set of all κ -tuples of \mathcal{G} is denoted \mathcal{G}^{κ} .
- $\mathcal{D}_*^{\kappa} = \left\{ \mathbf{W} \in \left(\mathbb{R}^d \right)^{\kappa} | \mathbf{W}_{\ell} \neq \mathbf{W}_k \text{ if and only if } \ell \neq k \right\}.$

 $\forall \mathbf{W} \in \mathcal{D}_*^\kappa$

$$C(\boldsymbol{w}) = \frac{1}{2} \sum_{\ell=1}^{\kappa} \int_{W_{\ell}(\boldsymbol{w})} \|\boldsymbol{z} - \boldsymbol{w}_{\ell}\|^2 d\mu(\boldsymbol{z}).$$

Voronoï tesselations.

Notation:

- The set of all κ -tuples of \mathcal{G} is denoted \mathcal{G}^{κ} .
- $\mathcal{D}_*^{\kappa} = \left\{ \mathbf{W} \in \left(\mathbb{R}^d \right)^{\kappa} | \mathbf{W}_{\ell} \neq \mathbf{W}_k \text{ if and only if } \ell \neq k \right\}.$

$$\forall \mathbf{W} \in \mathcal{D}_*^{\kappa}$$

,

$$C(\mathbf{w}) = rac{1}{2} \sum_{\ell=1}^{\kappa} \int_{W_{\ell}(\mathbf{w})} \|\mathbf{z} - \mathbf{w}_{\ell}\|^2 d\mu(\mathbf{z}).$$

Definition

Let $w \in (\mathbb{R}^d)^{\kappa}$, the Voronoï tessellation of \mathcal{G} related to w is the family of open sets $\{W_{\ell}(w)\}_{1 < \ell < \kappa}$ defined as follows:

• If $w \in \mathcal{D}_*^{\kappa}$, for all $1 \leq \ell \leq \kappa$,

$$W_{\ell}(w) = \left\{ v \in \mathcal{G} \mid \|w_{\ell} - v\| < \min_{k \neq \ell} \|w_{k} - v\| \right\}.$$

• If
$$w \in (\mathbb{R}^d)^{\kappa} \setminus \mathcal{D}_*^{\kappa}$$
, for all $1 \le \ell \le \kappa$,
• if $\ell = \min \{k | w_k = w_\ell\}$,

$$W_{\ell}(w) = \left\{ v \in \mathcal{G} \mid \|w_{\ell} - v\| < \min_{w_k \neq w_{\ell}} \|w_k - v\| \right\},$$

• otherwise, $W_{\ell}(w) = \emptyset$.

Definition

Let $w \in (\mathbb{R}^d)^{\kappa}$, the Voronoï tessellation of \mathcal{G} related to w is the family of open sets $\{W_{\ell}(w)\}_{1 < \ell < \kappa}$ defined as follows:

• If $w \in \mathcal{D}_*^{\kappa}$, for all $1 \leq \ell \leq \kappa$,

$$W_{\ell}(w) = \left\{ v \in \mathcal{G} \mid \|w_{\ell} - v\| < \min_{k \neq \ell} \|w_{k} - v\| \right\}.$$

• If
$$\boldsymbol{w} \in (\mathbb{R}^d)^{\kappa} \setminus \mathcal{D}_*^{\kappa}$$
, for all $1 \le \ell \le \kappa$,
• if $\ell = \min \{k | w_k = w_\ell\}$,
 $W_\ell(\boldsymbol{w}) = \left\{ v \in \mathcal{G} \mid \| w_\ell - v \| < \min_{w_k \ne w_\ell} \| w_k - v \| \right\}$,
• otherwise, $W_\ell(\boldsymbol{w}) = \emptyset$.

Voronoï tesselations 2D.

Figure: Voronoï tesselations of a vector of $\left(\mathbb{R}^2\right)^{15}\!\!.$

CLVQ

Competitive Learning Vector Quantization (CLVQ).

- Data arrive over time while the execution of the algorithm and their characteristics are unknown until their arrival times.
- On-line algorithm: uses each item of the training sequence at each update.

Data stream $\mathbf{z}_1, \mathbf{z}_2, \ldots$

Initialization with κ -prototypes $w(0) = (w_1(0), \dots, w_{\kappa}(0))$. For each $t = 0, \dots$

 ℓ_0 s.t. $w_{\ell_0}(t)$ nearest prototype of \mathbf{z}_{t+1} among $(w_1(t), \ldots, w_{\kappa}(t))$

$$w_{\ell_0}(t+1) = w_{\ell_0}(t) + \varepsilon_{t+1}(\mathbf{z}_{t+1} - w_{\ell_0}(t)),$$

 $\varepsilon_t \in (0, 1).$

CLVQ

Competitive Learning Vector Quantization (CLVQ).

- Data arrive over time while the execution of the algorithm and their characteristics are unknown until their arrival times.
- On-line algorithm: uses each item of the training sequence at each update.

Data stream $\mathbf{z}_1, \mathbf{z}_2, \ldots$

Initialization with κ -prototypes $w(0) = (w_1(0), \dots, w_{\kappa}(0))$. For each $t = 0, \dots$

 ℓ_0 s.t. $w_{\ell_0}(t)$ nearest prototype of z_{t+1} among $(w_1(t), \ldots, w_{\kappa}(t))$

$$\mathbf{w}_{\ell_0}(t+1) = \mathbf{w}_{\ell_0}(t) + \varepsilon_{t+1}(\mathbf{z}_{t+1} - \mathbf{w}_{\ell_0}(t)),$$

 $\varepsilon_t \in (0, 1).$

Video (short).

Video (long).

Regularity of the distortion.

Theorem (Pagès [1].)

C is continuously differentiable at every $\mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_{\kappa}) \in \mathcal{D}_*^{\kappa}$. $\forall 1 \leq \ell \leq \kappa$,

$$abla_\ell \mathcal{C}(w) = \int_{W_\ell(w)} (w_\ell - \mathsf{z}) \, d\mu(\mathsf{z}).$$

Local observation of the gradient.

Definition

For any $z \in \mathbb{R}^d$ and $w \in \mathcal{D}_*^{\kappa}$, define function *H* by its ℓ -th component,

$$H_{\ell}(\mathsf{z}, \mathsf{w}) = \begin{cases} \mathsf{z} - \mathsf{w}_{\ell} & \text{if } \mathsf{z} \in W_{\ell}(\mathsf{w}) \\ 0 & \text{otherwise.} \end{cases}$$

If random variable $\mathbf{z} \sim \mu$, the next equality holds for all $\mathbf{w} \in \mathcal{D}_*^{\kappa}$,

 $\mathbb{E}\left\{H(\mathbf{z},\mathbf{w})\right\}=\nabla C(\mathbf{w}).$

Thus, we extend the definition, for all $w \in (\mathbb{R}^d)^{\kappa}$,

 $h(w) \triangleq \mathbb{E} \{ H(\mathbf{z}, w) \}.$

Local observation of the gradient.

Definition

For any $z \in \mathbb{R}^d$ and $w \in \mathcal{D}_*^{\kappa}$, define function *H* by its ℓ -th component,

$$H_{\ell}(\mathsf{z}, \mathsf{w}) = egin{cases} \mathsf{z} - \mathsf{w}_{\ell} & ext{if } \mathsf{z} \in W_{\ell}(\mathsf{w}) \ \mathsf{0} & ext{otherwise.} \end{cases}$$

If random variable $\mathbf{z} \sim \mu$, the next equality holds for all $\mathbf{w} \in \mathcal{D}_*^{\kappa}$,

$$\mathbb{E}\left\{H(\mathbf{z},\mathbf{w})\right\}=\nabla C(\mathbf{w}).$$

Thus, we extend the definition, for all $w \in (\mathbb{R}^d)^{\kappa}$,

 $h(w) \triangleq \mathbb{E} \{ H(\mathbf{z}, w) \}.$

Local observation of the gradient.

Definition

For any $z \in \mathbb{R}^d$ and $w \in \mathcal{D}_*^{\kappa}$, define function *H* by its ℓ -th component,

$$H_{\ell}(\mathsf{z}, \mathsf{w}) = \begin{cases} \mathsf{z} - \mathsf{w}_{\ell} & \text{if } \mathsf{z} \in W_{\ell}(\mathsf{w}) \\ 0 & \text{otherwise.} \end{cases}$$

If random variable $z \sim \mu$, the next equality holds for all $w \in \mathcal{D}_*^{\kappa}$,

$$\mathbb{E}\left\{H(\mathbf{z},\mathbf{w})\right\}=\nabla C(\mathbf{w}).$$

Thus, we extend the definition, for all $w \in (\mathbb{R}^d)^{\kappa}$,

$$h(\mathbf{w}) \triangleq \mathbb{E} \{ H(\mathbf{z}, \mathbf{w}) \}.$$

Stochastic gradient optimization.

Minimize *C*: gradient descent procedure $w := w - \varepsilon \nabla C(w)$.

 $\nabla C(w)$ is unknown, use $H(\mathbf{z}, w)$ instead.

$w(t+1) = w(t) - \varepsilon_{t+1} H(\mathbf{z}_{t+1}, w(t)) \quad (\mathsf{CLVQ}),$

 $w(0) \in \overset{\circ}{\mathcal{G}^{\kappa}} \cap \mathcal{D}_{*}^{\kappa}$ and $z_1, z_2 \dots$ are independent observations distributed according to the probability measure μ .

Usual constraints on the decreasing speed of the sequence of steps $\{\varepsilon_t\}_{t=0}^{\infty} \in (0, 1),$

Stochastic gradient optimization.

Minimize *C*: gradient descent procedure $w := w - \varepsilon \nabla C(w)$.

 $\nabla C(\mathbf{w})$ is unknown, use $H(\mathbf{z}, \mathbf{w})$ instead.

$w(t+1) = w(t) - \varepsilon_{t+1} H(\mathbf{z}_{t+1}, w(t)) \quad (\mathsf{CLVQ}),$

 $w(0) \in \overset{\circ}{\mathcal{G}^{\kappa}} \cap \mathcal{D}_{*}^{\kappa}$ and $z_1, z_2 \dots$ are independent observations distributed according to the probability measure μ .

Usual constraints on the decreasing speed of the sequence of steps $\{\varepsilon_t\}_{t=0}^{\infty} \in (0, 1),$
Stochastic gradient optimization.

Minimize *C*: gradient descent procedure $w := w - \varepsilon \nabla C(w)$.

 $\nabla C(\mathbf{w})$ is unknown, use $H(\mathbf{z}, \mathbf{w})$ instead.

 $w(t+1) = w(t) - \varepsilon_{t+1}H(\mathbf{z}_{t+1}, w(t)) \quad (\mathsf{CLVQ}),$

 $w(0) \in \overset{\circ}{\mathcal{G}^{\kappa}} \cap \mathcal{D}_{*}^{\kappa}$ and $z_1, z_2 \dots$ are independent observations distributed according to the probability measure μ .

Usual constraints on the decreasing speed of the sequence of steps $\{\varepsilon_t\}_{t=0}^{\infty} \in (0, 1),$

$$\bigcirc \sum_{t=0}^{\infty} \varepsilon_t = \infty.$$

 $\bigcirc \sum_{t=0}^{\infty} \varepsilon_t^2 < \infty.$

Stochastic gradient optimization.

Minimize *C*: gradient descent procedure $w := w - \varepsilon \nabla C(w)$.

 $\nabla C(\mathbf{w})$ is unknown, use $H(\mathbf{z}, \mathbf{w})$ instead.

 $w(t+1) = w(t) - \varepsilon_{t+1}H(\mathbf{z}_{t+1}, w(t)) \quad (\mathsf{CLVQ}),$

 $w(0) \in \overset{\circ}{\mathcal{G}^{\kappa}} \cap \mathcal{D}_{*}^{\kappa}$ and $z_1, z_2 \dots$ are independent observations distributed according to the probability measure μ .

Usual constraints on the decreasing speed of the sequence of steps $\{\varepsilon_t\}_{t=0}^{\infty} \in (0, 1),$

1
$$\sum_{t=0}^{\infty} \varepsilon_t = \infty$$
.
2 $\sum_{t=0}^{\infty} \varepsilon_t^2 < \infty$.

Troubles.

On the distortion:

- C is not a convex function.
- $\|C(w)\| \nrightarrow \infty$ as $\|w\| \to \infty$.

On its gradient:

- *h* is singular at $\mathbb{C}\mathcal{D}_*^{\kappa}$.
- *h* is zero on wide zone outside \mathcal{G}^{κ} .

Troubles.

On the distortion:

- C is not a convex function.
- $\|C(w)\| \nrightarrow \infty$ as $\|w\| \to \infty$.

On its gradient:

- *h* is singular at $\mathbb{C}\mathcal{D}_*^{\kappa}$.
- *h* is zero on wide zone outside \mathcal{G}^{κ} .

What can be expected?

$$w(t) \nleftrightarrow w^{\circ} = \operatorname*{argmin}_{w \in \mathcal{G}^{\kappa}} C(w), \quad \text{almost surely (a.s.).}$$

Proposition (Pagès [1].)

$$\operatorname*{argmin}_{w \in (\mathbb{R}^d)^\kappa} \mathcal{C}(w) \subset \operatorname*{argminloc}_{w \in \mathcal{G}^\kappa} \mathcal{C}(w) \subset \overset{\circ}{\mathcal{G}^\kappa} \cap \{\nabla \mathcal{C} = 0\} \cap \mathcal{D}^\kappa_*$$

$$w(t) \xrightarrow[t\to\infty]{a.s.} \mathcal{G}^{\kappa} \cap \{\nabla C = 0\} \cap \mathcal{D}_{*}^{\kappa}.$$

What can be expected?

$$w(t)
arrow w^{\circ} = \operatorname*{argmin}_{w \in \mathcal{G}^{\kappa}} C(w), \quad \text{almost surely (a.s.)}.$$

Proposition (Pagès [1].)

$$\underset{w \in \left(\mathbb{R}^{d}\right)^{\kappa}}{\operatorname{argminloc}} C(w) \subset \overset{\circ}{\mathcal{G}^{\kappa}} \cap \{\nabla C = 0\} \cap \mathcal{D}_{*}^{\kappa}.$$

$$w(t) \xrightarrow[t\to\infty]{a.s.} \mathcal{G}^{\kappa} \cap \{\nabla \boldsymbol{C} = \boldsymbol{0}\} \cap \mathcal{D}_{*}^{\kappa}.$$

What can be expected?

$$w(t)
arrow w^{\circ} = \operatorname*{argmin}_{w \in \mathcal{G}^{\kappa}} C(w), \quad \text{almost surely (a.s.)}.$$

Proposition (Pagès [1].)

$$\operatorname*{argmin}_{w \in \left(\mathbb{R}^{d}\right)^{\kappa}} \mathcal{C}(w) \subset \operatorname*{argminloc}_{w \in \mathcal{G}^{\kappa}} \mathcal{C}(w) \subset \overset{\circ}{\mathcal{G}^{\kappa}} \cap \{\nabla \mathcal{C} = 0\} \cap \mathcal{D}_{*}^{\kappa}.$$

$$w(t) \xrightarrow[t \to \infty]{a.s.} \mathcal{G}^{\kappa} \cap \{\nabla C = 0\} \cap \mathcal{D}^{\kappa}_{*}.$$

Theorem (G-Lemma, Fort and Pagès [2].)

Assume that:

- $\{w(t)\}_{t=0}^{\infty}$ and $\{h(w(t))\}_{t=0}^{\infty}$ are bounded with probability 1.
- 2 The series $\sum_{t=0}^{\infty} \varepsilon_{t+1} \left(H(\mathbf{z}_{t+1}, \mathbf{w}(t)) h(\mathbf{w}(t)) \right)$ converge a.s. in $(\mathbb{R}^d)^{\kappa}$.
- There exists a l.s.c. nonnegative function $G: (\mathbb{R}^d)^{\kappa} \to \mathbb{R}_+$ s.t.

$$\sum_{s=0}^{\infty} \varepsilon_{s+1} G(w(s)) < \infty \quad a.s..$$

Then there exists a connected component Ξ of $\{G = 0\}$ s.t.

$$\lim_{t\to\infty} \operatorname{dist}\left(\frac{w(t)}{},\Xi\right)=0 \quad a.s..$$

A suitable *G*: For every $w \in \mathcal{G}^{\kappa}$,

$$\widehat{G}(\mathbf{w}) \triangleq \liminf_{\mathbf{v} \in \mathcal{G}^{\kappa} \cap \mathcal{D}^{\kappa}_{*}, \mathbf{v} \to \mathbf{w}} \| \nabla C(\mathbf{v}) \|^{2}.$$

 \widehat{G} is a nonnegative l.s.c. function on \mathcal{G}^{κ} .

A suitable G: For every $\mathbf{w} \in \mathcal{G}^{\kappa}$,

$$\widehat{G}(\mathbf{w}) \triangleq \liminf_{\mathbf{v} \in \mathcal{G}^{\kappa} \cap \mathcal{D}^{\kappa}_{*}, \mathbf{v} \to \mathbf{w}} \| \nabla C(\mathbf{v}) \|^{2}.$$

 \widehat{G} is a nonnegative l.s.c. function on \mathcal{G}^{κ} .

Theorem (Pagès [1].)

Under assumption [Compact supported density], on the event

$$\left\{\liminf_{t\to\infty}\operatorname{dist}\left(\boldsymbol{w}(t), \mathcal{CD}_*^{\kappa}\right)>0\right\},\,$$

dist
$$(w(t), \Xi_{\infty}) = 0$$
 a.s. as $t \to \infty$,

where Ξ_{∞} is some connected component of $\{\nabla C = 0\}$.

Remarks:

- Asymptotically parted component.
- No satisfactory convergence result is provided without this assumption.
- However, some studies have been carried out by Pagès [1].

Theorem (Pagès [1].)

Under assumption [Compact supported density], on the event

$$\left\{\liminf_{t\to\infty}\operatorname{dist}\left(\mathbf{w}(t), \mathcal{CD}_*^{\kappa}\right) > 0\right\},\,$$

dist
$$(w(t), \Xi_{\infty}) = 0$$
 a.s. as $t \to \infty$,

where Ξ_{∞} is some connected component of { $\nabla C = 0$ }.

Remarks:

- Asymptotically parted component.
- No satisfactory convergence result is provided without this assumption.
- However, some studies have been carried out by Pagès [1].

Why?

• On line algorithm have impressive convergence properties.

• Such algorithms are entirely sequential in their nature.

• Thus, CLVQ algorithm is too slow on large data sets or with high dimension data.

Why?

- On line algorithm have impressive convergence properties.
- Such algorithms are entirely sequential in their nature.
- Thus, CLVQ algorithm is too slow on large data sets or with high dimension data.

Why?

- On line algorithm have impressive convergence properties.
- Such algorithms are entirely sequential in their nature.
- Thus, CLVQ algorithm is too slow on large data sets or with high dimension data.

- We introduce a model that brings together the CLVQ and the comprehensive theory of asynchronous parallel linear algorithms (Tsitsiklis [3]).
- Resulting model will be called Distributed Asynchronous Learning Vector Quantization (DALVQ).
- DALVQ parallelizes several executions of CLVQ concurrently at different processors while the results of theses latter algorithms are broadcasted through the distributed framework in efficient way.
- Our parallel DALVQ algorithm is able to process, for a given time span, much more data than a (single processor) execution of the CLVQ procedure.

- We introduce a model that brings together the CLVQ and the comprehensive theory of asynchronous parallel linear algorithms (Tsitsiklis [3]).
- Resulting model will be called Distributed Asynchronous Learning Vector Quantization (DALVQ).
- DALVQ parallelizes several executions of CLVQ concurrently at different processors while the results of theses latter algorithms are broadcasted through the distributed framework in efficient way.
- Our parallel DALVQ algorithm is able to process, for a given time span, much more data than a (single processor) execution of the CLVQ procedure.

- We introduce a model that brings together the CLVQ and the comprehensive theory of asynchronous parallel linear algorithms (Tsitsiklis [3]).
- Resulting model will be called Distributed Asynchronous Learning Vector Quantization (DALVQ).
- DALVQ parallelizes several executions of CLVQ concurrently at different processors while the results of theses latter algorithms are broadcasted through the distributed framework in efficient way.
- Our parallel DALVQ algorithm is able to process, for a given time span, much more data than a (single processor) execution of the CLVQ procedure.

- We introduce a model that brings together the CLVQ and the comprehensive theory of asynchronous parallel linear algorithms (Tsitsiklis [3]).
- Resulting model will be called Distributed Asynchronous Learning Vector Quantization (DALVQ).
- DALVQ parallelizes several executions of CLVQ concurrently at different processors while the results of theses latter algorithms are broadcasted through the distributed framework in efficient way.
- Our parallel DALVQ algorithm is able to process, for a given time span, much more data than a (single processor) execution of the CLVQ procedure.

- We dispose of a distributed architecture with *M* computing entities called processors/workers.
- Each processor is labeled by a natural number $i \in \{1, \dots, M\}$.
- Each processor *i* has a buffer (local memory) where the current version of the iteration is kept: $\{w^i(t)\}_{t=0}^{\infty}, (\mathbb{R}^d)^{\kappa}$ -valued sequence.

- We dispose of a distributed architecture with *M* computing entities called processors/workers.
- Each processor is labeled by a natural number $i \in \{1, \dots, M\}$.
- Each processor *i* has a buffer (local memory) where the current version of the iteration is kept: $\{w^i(t)\}_{t=0}^{\infty}, (\mathbb{R}^d)^{\kappa}$ -valued sequence.

- We dispose of a distributed architecture with *M* computing entities called processors/workers.
- Each processor is labeled by a natural number $i \in \{1, \dots, M\}$.
- Each processor *i* has a buffer (local memory) where the current version of the iteration is kept: $\{w^i(t)\}_{t=0}^{\infty}, (\mathbb{R}^d)^{\kappa}$ -valued sequence.

Independent.

Independent

A generic descent term:

$$w(t+1) = w(t) + \underbrace{-\varepsilon_t H(\mathbf{z}_{t+1}, w(t))}_{\triangleq s(t)}.$$

Basic parallelization.

For all $1 \le i \le M$, where *M* is the number of processors.

$$w^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t)w^{j}(t) + s^{i}(t).$$

Where the $\{a^{i,j}(t)\}_{j=1}^{M}$ are some weights (convex combination).

For many $t \ge 0$,

$$a^{i,j}(t) = egin{cases} 1 & ext{if } i=j \ 0 & ext{otherwise}. \end{cases}$$

For such values: local iterations

$$w^i(t+1) = w^i(t) + s^i(t)$$

Synchronization effects:

- Synchronizations required in this model.
- We should take into account communication delays and design an asynchronous algorithm.
- Local algorithms do not have to wait at preset points for some messages to become available.
- Processors compute faster and execute more iterations than others. Communication delays are allowed to be substantial and unpredictable.
- Messages can be deliver out of order (a different order than the one in which they were transmitted).

Advantages

- Reduction of the synchronization penalty: speed advantage over a synchronous execution.
- For a potential industrialization, asynchronism has a greater implementation flexibility.

Advantages

- Reduction of the synchronization penalty: speed advantage over a synchronous execution.
- For a potential industrialization, asynchronism has a greater implementation flexibility.

The Tsitsikils's asynchronous model.

General Distributed Asynchronous System (GDAS), Tsitsklis [3, 4]:

$$w^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) w^{j}(\tau^{i,j}(t)) + s^{i}(t).$$

• $0 \le \tau^{i,j}(t) \le t$: deterministic (but unknown) time instant.

• $t - \tau^{i,j}(t)$: communication delays.

• $\tau^{i,i}(t) = t$.

The Tsitsikils's asynchronous model.

General Distributed Asynchronous System (GDAS), Tsitsklis [3, 4]:

$$w^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) w^{j}(\tau^{i,j}(t)) + s^{i}(t).$$

• $0 \le \tau^{i,j}(t) \le t$: deterministic (but unknown) time instant.

• $t - \tau^{i,j}(t)$: communication delays.

•
$$\tau^{i,i}(t) = t$$
.

Model agreement.

Agreement algorithm.

$$x^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) x^{j}(\tau^{i,j}(t)),$$

$$x^{i}(\mathbf{0}) \in (\mathbb{R}^{d})^{\kappa}$$
, for all *i*.

Remark: Similar to (GDAS) but with $s^i(t) = 0$ for all t, i.

Is there (or at least what are the conditions to ensure) an asymptotical consensus between the processors/workers?

Model agreement.

Agreement algorithm.

$$x^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) x^{j}(\tau^{i,j}(t)),$$

$$x^{i}(\mathbf{0}) \in (\mathbb{R}^{d})^{\kappa}$$
, for all *i*.

Remark: Similar to (GDAS) but with $s^{i}(t) = 0$ for all t, i.

Is there (or at least what are the conditions to ensure) an asymptotical consensus between the processors/workers?

Model agreement.

Agreement algorithm.

$$x^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) x^{j}(\tau^{i,j}(t)),$$

$$x^{i}(\mathbf{0}) \in (\mathbb{R}^{d})^{\kappa}$$
, for all *i*.

Remark:

Similar to (GDAS) but with $s^{i}(t) = 0$ for all t, i.

Is there (or at least what are the conditions to ensure) an asymptotical consensus between the processors/workers?
Assumptions 1.

Assumption (Bounded communication delays)

There exists a positive integer B_1 s.t.

$$t-B_1<\tau^{i,j}(t)\leq t,$$

for all $(i, j) \in \{1, \dots, M\}^2$ and all $t \ge 0$.

Assumption (Convex combination and threshold)

There exists $\alpha >$ 0 s.t. the following three properties hold:

■
$$a^{i,i}(t) \ge \alpha$$
, $i \in \{1, ..., M\}$ and $t \ge 0$,

ⓐ
$$a^{i,j}(t) \in \{0\} \cup [\alpha, 1], (i,j) \in \{1, ..., M\}^2$$
 and $t \ge 0$,

^I S $\sum_{j=1}^{M} a^{i,j}(t) = 1$, *i* ∈ {1,...,*M*} and *t* ≥ 0.

Assumptions 1.

Assumption (Bounded communication delays)

There exists a positive integer B_1 s.t.

$$t-B_1<\tau^{i,j}(t)\leq t,$$

for all $(i, j) \in \{1, \dots, M\}^2$ and all $t \ge 0$.

Assumption (Convex combination and threshold)

There exists $\alpha > 0$ s.t. the following three properties hold:

Assumption 2.

Definition (Communication graph)

Let us fix $t \ge 0$, the communication graph $(\mathcal{V}, \mathcal{E}(t))$ is defined by

- the set of vertices \mathcal{V} is formed by the set of processors, $\mathcal{V} = \{1, \dots, M\},\$
- the set of edges E(t) is defined via the relationship

 $(j,i) \in E(t)$ if and only if $a^{i,j}(t) > 0$.

Assumption (Graph connectivity)

The graph $(\mathcal{V}, \cup_{s \ge t} E(s))$ is strongly connected for all $t \ge 0$.

Assumption 2.

Definition (Communication graph)

Let us fix $t \ge 0$, the communication graph $(\mathcal{V}, \mathcal{E}(t))$ is defined by

- the set of vertices \mathcal{V} is formed by the set of processors, $\mathcal{V} = \{1, \dots, M\},\$
- the set of edges E(t) is defined via the relationship

 $(j,i) \in E(t)$ if and only if $a^{i,j}(t) > 0$.

Assumption (Graph connectivity)

The graph $(\mathcal{V}, \cup_{s \ge t} E(s))$ is strongly connected for all $t \ge 0$.

Assumption 3 and Assumption 4.

Assumption (Bounded communication intervals)

If *i* communicates with *j* an infinite number of times, then there is a positive integer B₂ such that, for all $t \ge 0$, $(i,j) \in E(t) \cup E(t+1) \cup \ldots \cup E(t+B_2-1)$.

Assumption (Symmetry)

There exists some $B_3 > 0$ such that, whenever $(i, j) \in E(t)$, there exists some τ that satisfies $|t - \tau| < B_3$ and $(j, i) \in E(\tau)$.

Benoît Patra (UPMC-Paris VI/Lokad)

Assumption 3 and Assumption 4.

Assumption (Bounded communication intervals)

If *i* communicates with *j* an infinite number of times, then there is a positive integer B₂ such that, for all $t \ge 0$, $(i,j) \in E(t) \cup E(t+1) \cup \ldots \cup E(t+B_2-1)$.

Assumption (Symmetry)

There exists some $B_3 > 0$ such that, whenever $(i, j) \in E(t)$, there exists some τ that satisfies $|t - \tau| < B_3$ and $(j, i) \in E(\tau)$.

Until the end of the presentation either $(AsY)_1$ or $(AsY)_2$ holds

 $(AsY)_{1} \equiv \begin{cases} \text{Assumption [Bounded communication delays]} \\ \text{Assumption [Convex combination and threshold]} \\ \text{Assumption [Graph connectivity]} \\ \text{Assumption [Bounded communication intervals]} \end{cases}$

$$(AsY)_2 \equiv$$

Assumption [Bounded communication delays]
Assumption [Convex combination and threshold]
Assumption [Graph connectivity]
Assumption [Symmetry]

Agreement theorem.

Agreement algorithm.

$$\mathbf{x}^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) \mathbf{x}^{j}(\tau^{i,j}(t)),$$

Theorem (Blondel et al. [5])

Under assumptions $(AsY)_1$ or $(AsY)_2$ there is a vector $c^* \in (\mathbb{R}^d)^{\kappa}$ (independent of *i*) s.t.,

$$\lim_{t\to\infty}\left\|\boldsymbol{x}^{i}(t)-\boldsymbol{c}^{\star}\right\|=0.$$

Even more, there exists $\rho \in [0, 1)$ and L > 0, s.t.,

$$\left\|\mathbf{x}^{i}(t)-\mathbf{x}^{i}(\tau)\right\|\leq L\rho^{t- au},$$

Agreement vector.

The previous theorem is useful for the study of (GDAS):

$$w^{i}(t+1) = \sum_{j=1}^{M} a^{i,j}(t) w^{j}(\tau^{i,j}(t)) + s^{i}(t).$$

For any $t' \ge 0$, if computations with descent terms have stopped after t', i.e, $s^i(t) = 0$ for all $t \ge t'$ and all *i*.

$$w^i(t) \xrightarrow[t \to \infty]{} w^*(t') \quad \text{for all } i \in \{1, \dots, M\}.$$

Agreement vector sequence.

Agreement vector sequence: $\{w^*(t)\}_{t=0}^{\infty}$. The true definition is more complex.

Remark:

The agreement vector w^* satisfies, for all $t \ge 0$,

$$w^{*}(t+1) = w^{*}(t) + \sum_{j=1}^{M} \phi^{j}(t) s^{j}(t), \qquad (1)$$

 $\phi^j(t)\in[0,1].$

Although the agreement vector sequence is unknown it will be a useful tool for the convergence analysis of (GDAS).

Agreement vector sequence.

Agreement vector sequence: $\{w^*(t)\}_{t=0}^{\infty}$. The true definition is more complex.

Remark:

The agreement vector w^* satisfies, for all $t \ge 0$,

$$w^{\star}(t+1) = w^{\star}(t) + \sum_{j=1}^{M} \phi^{j}(t) s^{j}(t),$$
 (1)

 $\phi^j(t)\in [0,1].$

Although the agreement vector sequence is unknown it will be a useful tool for the convergence analysis of (GDAS).

Agreement vector sequence.

Agreement vector sequence: $\{w^*(t)\}_{t=0}^{\infty}$. The true definition is more complex.

Remark:

The agreement vector w^* satisfies, for all $t \ge 0$,

$$w^{*}(t+1) = w^{*}(t) + \sum_{j=1}^{M} \phi^{j}(t) s^{j}(t),$$
 (1)

 $\phi^j(t)\in [0,1].$

Although the agreement vector sequence is unknown it will be a useful tool for the convergence analysis of (GDAS).

Distributed Asynchronous Learning Vector Quantization (DALVQ).

(GDAS) with the descent terms s^i ,

$$s^{i}(t) = \begin{cases} -\varepsilon_{t}^{i} H\left(\mathbf{z}_{t+1}^{i}, \mathbf{w}^{i}(t)\right) & \text{if } t \in T^{i} \\ 0 & \text{otherwise.} \end{cases}$$

Notation:

• T^i : set of time instant where the version $\{w^i(t)\}_{t=0}^{\infty}$ is updated with descent terms. T^i deterministic but do not need to be known a priori for the execution.

•
$$\{\mathbf{z}_t^i\}_{t=0}^{\infty}$$
 iid sequences of r.v. of law μ .

• $\mathcal{F}_t \triangleq \sigma \left(\mathbf{z}_s^i, \text{ for all } s \leq t \text{ and } 1 \leq i \leq M \right).$

Distributed Asynchronous Learning Vector Quantization (DALVQ).

(GDAS) with the descent terms s^i ,

$$s^{i}(t) = egin{cases} -arepsilon_{t}^{i} H\left(\mathbf{z}_{t+1}^{i}, \mathbf{w}^{i}(t)
ight) & ext{if } t \in T^{i} \ \mathbf{0} & ext{otherwise.} \end{cases}$$

Notation:

• T^i : set of time instant where the version $\{w^i(t)\}_{t=0}^{\infty}$ is updated with descent terms. T^i deterministic but do not need to be known a priori for the execution.

•
$$\{z_t^i\}_{t=0}^{\infty}$$
 iid sequences of r.v. of law μ .

•
$$\mathcal{F}_t \triangleq \sigma \left(\mathbf{z}_s^i, \text{ for all } s \leq t \text{ and } 1 \leq i \leq M \right).$$

DALVQ.

DALVQ

To be continued.

We assume that the sequences ε_t^i satisfy the following conditions:

Assumption (Decreasing steps)

There exist two constants K_1 , K_2 s.t., for all *i* and all $t \ge 0$,

$$\frac{K_1}{t\vee 1}\leq \varepsilon_t^i\leq \frac{K_2}{t\vee 1}.$$

Assumption (Non idle)

 $\sum_{j=1}^M \mathbb{1}_{t\in T^j} > 0$

To be continued.

We assume that the sequences ε_t^i satisfy the following conditions:

Assumption (Decreasing steps)

There exist two constants K_1 , K_2 s.t., for all i and all $t \ge 0$,

$$\frac{K_1}{t\vee 1}\leq \varepsilon_t^i\leq \frac{K_2}{t\vee 1}.$$

Assumption (Non idle)

$$\sum_{j=1}^M \mathbb{1}_{t\in T^j} > 0$$

The recursion formula of agreement vector writes,

$$w^{*}(t+1) = w^{*}(t) + \sum_{j=1}^{M} \phi^{j}(t)s^{j}(t).$$

Using the function *h*,

$$h(\mathbf{w}^{\star}(t)) = \mathbb{E} \left\{ H(\mathbf{z}_{t+1}, \mathbf{w}^{\star}(t)) \mid \mathcal{F}_t \right\}$$

and

$$h(\mathbf{w}^{j}(t)) = \mathbb{E}\left\{H\left(\mathbf{z}_{t+1}, \mathbf{w}^{j}(t)\right) \mid \mathcal{F}_{t}\right\}, \quad \text{for all } j.$$

Set,

$$\varepsilon_t^{\star} \triangleq \frac{1}{2} \sum_{j=1}^{M} \mathbb{1}_{t \in T^j} \phi^j(t) \varepsilon_t^j$$

and

$$\Delta M_t^1 \triangleq \frac{1}{2} \sum_{j=1}^M \mathbb{1}_{t \in T^j} \phi^j(t) \varepsilon_t^j \left(h(w^*(t)) - h(w^j(t)) \right),$$

and,

$$\Delta M_t^2 \triangleq \frac{1}{2} \sum_{j=1}^M \mathbb{1}_{t \in T^j} \phi^j(t) \varepsilon_t^j \left(h(w^j(t)) - H\left(\mathbf{z}_{t+1}^j, w^j(t)\right) \right).$$

The recursion (1) writes,

$$w^{\star}(t+1) = w^{\star}(t) - \varepsilon_t^{\star}h(w^{\star}(t)) + \Delta M_t^1 + \Delta M_t^2.$$

Set,

$$\varepsilon_t^{\star} \triangleq \frac{1}{2} \sum_{j=1}^{M} \mathbb{1}_{t \in \mathcal{T}^j} \phi^j(t) \varepsilon_t^j$$

and

$$\Delta M_t^1 \triangleq \frac{1}{2} \sum_{j=1}^M \mathbb{1}_{t \in T^j} \phi^j(t) \varepsilon_t^j \left(h(w^*(t)) - h(w^j(t)) \right),$$

and,

$$\Delta M_t^2 \triangleq \frac{1}{2} \sum_{j=1}^M \mathbb{1}_{t \in T^j} \phi^j(t) \varepsilon_t^j \left(h(w^j(t)) - H\left(\mathbf{z}_{t+1}^j, w^j(t) \right) \right).$$

The recursion (1) writes,

$$w^{\star}(t+1) = w^{\star}(t) - \varepsilon_t^{\star}h(w^{\star}(t)) + \Delta M_t^1 + \Delta M_t^2.$$

Theorem (Asynchronous G-Lemma)

Assume that one has,

- The sequences $\{w^*(t)\}_{t=0}^{\infty}$ and $\{h(w^*(t))\}_{t=0}^{\infty}$ are bounded with probability 1.
- **3** The series $\sum_{t=0}^{\infty} \Delta M_t^{(1)}$ and $\sum_{t=0}^{\infty} \Delta M_t^{(2)}$ converge a.s. in $(\mathbb{R}^d)^{\kappa}$.
- There exists a l.s.c. map $G: (\mathbb{R}^d)^{\kappa} \longrightarrow \mathbb{R}_+$, s.t.

$$\sum_{t=0}^{\infty} \varepsilon_{t+1}^{\star} G(\boldsymbol{w}^{\star}(t)) < \infty, \quad a.s..$$

Then there exists a connected component Ξ of $\{G = 0\}$ s.t.

$$\lim_{t\to\infty}\operatorname{dist}\left(\boldsymbol{w}^{\star}(t),\Xi\right)=0,\quad a.s..$$

$$\widehat{G}(\boldsymbol{w}) \triangleq \liminf_{\boldsymbol{v} \in \mathcal{G}^{\kappa} \cap \mathcal{D}^{\kappa}_{*}, \boldsymbol{v} \to \boldsymbol{w}} \|\nabla C(\boldsymbol{v})\|^{2}.$$

Assumption (Trajectories in \mathcal{G}^{κ})

$$\mathbb{P}\left\{\mathbf{w}^{j}(t)\in\mathcal{G}^{\kappa}
ight\}=1,\;\forall j\;\forall t\geq0.$$

Benoît Patra (UPMC-Paris VI/Lokad)

$$\widehat{G}(\boldsymbol{w}) \triangleq \liminf_{\boldsymbol{v} \in \mathcal{G}^{\kappa} \cap \mathcal{D}^{\kappa}_{*}, \boldsymbol{v} \to \boldsymbol{w}} \|\nabla C(\boldsymbol{v})\|^{2}.$$

Assumption (Trajectories in \mathcal{G}^{κ})

$$\mathbb{P}\left\{ \mathbf{w}^{j}(t)\in\mathcal{G}^{\kappa}\right\} =1,\;\forall j\;\forall t\geq0.$$

Benoît Patra (UPMC-Paris VI/Lokad)

Lemma

Assume that Assumptions [Decreasing steps] and [Trajectories in \mathcal{G}^{κ}] are satisfied. Then, for all $t \ge 0$

$$\|\boldsymbol{w}^{\star}(t) - \boldsymbol{w}^{i}(t)\| \leq \sqrt{\kappa} M \operatorname{diam}(\mathcal{G}) A K_{2} \theta_{t}, \quad a.s.,$$

where $\theta_{t} \triangleq \sum_{\tau=-1}^{t-1} \frac{1}{\tau \vee 1} \rho^{t-\tau}.$

Remark

Under assumptions [Trajectories in \mathcal{G}^{κ}],

Lemma

Assume that Assumptions [Decreasing steps] and [Trajectories in \mathcal{G}^{κ}] are satisfied. Then, for all $t \ge 0$

$$\|\boldsymbol{w}^{\star}(t) - \boldsymbol{w}^{i}(t)\| \leq \sqrt{\kappa} M \operatorname{diam}(\mathcal{G}) A K_{2} \theta_{t}, \quad a.s.,$$

where $\theta_{t} \triangleq \sum_{\tau=-1}^{t-1} \frac{1}{\tau \vee 1} \rho^{t-\tau}.$

Remark

Under assumptions [Trajectories in \mathcal{G}^{κ}],

•
$$w^{\star}(t) - w^{i}(t) \xrightarrow{a.s.} 0 \text{ as } t \to \infty,$$

2
$$w^{j}(t) - w^{i}(t) \xrightarrow{a.s.} 0$$
 as $t \to \infty$ for $i \neq j$.

The Asynchronous Theorem.

Assumption (Parted component assumption)

$$\mathbb{P}\left\{ \mathbf{w}^{\star}(t) \in \mathcal{D}^{\kappa}_{*} \right\} = 1, \text{ for all } t \geq 0.$$

2
$$\mathbb{P}\left\{\lim \inf_{t\to\infty} \operatorname{dist}\left(\mathbf{w}^{\star}(t), \complement \mathcal{D}_{*}^{\kappa}\right)\right\} = 1.$$

Theorem (Asynchronous Theorem)

If assumptions [Trajectories in \mathcal{G}^{κ}], [Parted component assumption] hold then,

$$W^*(t) \xrightarrow[t\to\infty]{a.s.} \equiv_{\infty},$$

and,

$$w^{i}(t) \xrightarrow[t \to \infty]{a.s.} \Xi_{\infty}$$
, for all processors is

Where Ξ_{∞} is some connected component of $\{\nabla C = 0\}$.

The Asynchronous Theorem.

Assumption (Parted component assumption)

Theorem (Asynchronous Theorem)

If assumptions [Trajectories in \mathcal{G}^{κ}], [Parted component assumption] hold then,

$$\mathbf{W}^{\star}(t) \xrightarrow[t\to\infty]{a.s.} \Xi_{\infty},$$

and,

$$w^{i}(t) \xrightarrow[t \to \infty]{a.s.} \Xi_{\infty}$$
, for all processors *i*.

Where Ξ_{∞} is some connected component of $\{\nabla C = 0\}$.

Bibliography

- G. Pagès, "A space vector quantization for numerical integration," Journal of Applied and Computational Mathematics, vol. 89, 1997.
- J.-C. Fort and G. Pagès, "Convergence of stochastic algorithms: From the kushner-clark theorem to the lyapounov functional method," *Advances in Applied Probability*, vol. 28, 1996.
- J. Tsitsiklis, D. Bertsekas, and M. Athans, "Distributed asynchronous deterministic and stochastic gradient optimization algorithms," *Automatic Control, IEEE Transactions on*, vol. 31, 1986.
- D. P. Bertsekas and J. N. Tsitsiklis, *Parallel and distributed computation: numerical methods*. USA: Prentice-Hall, Inc., 1989.
- V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, "Convergence in multiagent coordination, consensus, and flocking," *Decision and Control, 2005 and 2005 European Control Conference*, 2005.

Bibliography

D. Pollard, "Quantization and the method of k-means," IEEE Transactions on Information Theory, 1982.

------, "Stong consistency of k-means clustering," The annals of statistics, vol. 9, 1981.

D. Pollard, "A central limit theorem for k-means clustering," The annals of probability, vol. 28, 1982.

P. A. Chou, "The distortion of vector quantizers trained on *n* vectors decreases to the optimum at $o_p(1/n)$," *IEEE transactions on information theory*, vol. 8, 1994.

Z. K. Linder T., Lugosi G., "Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding," *IEEE Transactions on Information Theory*, vol. 40.

L. G. Bartlett P.L., Linder T., "The minimax distortion redundancy in empirical quantizer design," *IEEE Transactions on Information Theory*, vol. 44, 1998.

M. Inaba, N. Katoh, and H. Imai, "Applications of weighted voronoi diagrams and randomization to variance-based k-clustering," in SCG '94: Proceedings of the tenth annual symposium on Computational geometry. USA: ACM, 1994.

L. Thomas, "On the training distortion of vector quantizers," IEEE Transactions on Information Theory, vol. 46, 2000.