Correction DM 1

Correction des exercices 4 et 6 de la fiche de TD4.

Exercice 4

Préambule: Démontrons le théorème suivant:

Théorème

Soient E et F deux espaces vectoriels sur K et E_1 et E_2 deux sous espaces vectoriels de E tels que $E = E_1 + E_2$. Soient deux éléments f et g de L(E,F) tels que f est égale à g sur E_1 et sur E_2 alors f = g. démonstration: Attention à ne pas confondre $E_1 + E_2$ avec $E_1 \cup E_2$, il g a donc quelque chose de non trivial ici et le fait que f et g soient des applications linéaires joue un rôle crucial.

Soit $x \in E$, montrons que f(x) = g(x).

On a $E=E_1+E_2$, donc il existe $x_1\in E_1$ et $x_2\in E_2$ tel que $x=x_1+x_2$.

$$f(x) = f(x_1) + f(x_2)$$
 car f est linéaire,
 $= g(x_1) + g(x_2)$ car $f = g$ sur E_1 et sur E_2 ,
 $= g(x_1 + x_2)$ car f est linéaire.
 $= g(x)$.

1)Soit $p \in L(E)$,

```
\begin{split} I_E - p \text{ est un projecteur} &\Leftrightarrow (I_E - p) \circ (I_E - p) = I_E - p \\ &\Leftrightarrow I_E \circ I_E - p \circ I_E - p \circ I_E + p \circ p = I_E - p \quad \text{(par distributivit\'e de $\circ$ dans $L(E)$)} \\ &\Leftrightarrow I_E - 2p + p \circ p = I_E - p \\ &\Leftrightarrow p \circ p = p \\ &\Leftrightarrow p \text{ est un projecteur} \end{split}
```

Soit p un projecteur,

soit $y \in \text{Im } p$, donc il existe $x \in E$ tel que y = p(x).

On a $p(y) = p(p(x)) = p \circ p(x) = p(x) = y$ car $p \circ p = p$. donc $(I_E - p)(y) = 0$ donc $y \in \text{Ker}(I_E - p)$. On obtient donc que $\text{Im } p \subset \text{Ker}(I_E - p)$.

Réciproquement si $x \in \text{Ker}(I_E - p)$, on a p(x) = x. x a donc un antécédent par p, finalement $x \in \text{Im } p$. En conclusion on obtient que $\text{Im } p = \text{Ker}(I_E - p)$.

L'élément p étant un projecteur quelconque cette propriété est donc vrai pour tout projecteur. En appliquant à $p' = I_E - p$ qui est bien un projecteur d'après ce qui précèdent on a, $\text{Im}(I_E - p) = \text{Ker}(p)$.

2) Soit p un projecteur, montrons que $E = \operatorname{Im} p \oplus \operatorname{Ker}(p)$.

N'ayant pas d'idée a priori de la forme de la décomposition d'un élement $x \in E$ quelconque en la somme d'un élément de $\operatorname{Im} p$ et d'un élément de $\operatorname{Ker}(p)$ nous allons effectuer un raisonnement par Analyse Synthèse où nous regarderons dans l'analyse quels sont les conditions nécessaires vérifiées par une telle décomposition.

Analyse Soit $x \in E$, supposons qu'il existe $y \in \text{Im } p$ et $z \in \text{Ker}(p)$ tels que x = y + z.

On a donc que p(x) = p(y) car p(z) = 0 puisque $z \in \text{Ker } p$. Mais d'autre part p(y) = y, en effet $y \in \text{Im } p$ donc il existe $y' \in E$ tel que y = p(y') mais alors $p(y) = (p \circ p)(y') = p(y') = y$.

Finalement, y = p(x) et donc z = x - p(x). Nous avons montré que si une décomposition existe alors elle est de la forme précédente. En particulier, pour un élément x donné elle est unique nous savons d'ores et déjà que la somme est directe.

Synthèse Soit $x \in E$, on écrit (en s'inspirant de ce qui précède) x = x - p(x) + p(x), on a bien $x - p(x) \in \text{Ker } p$ et $p(x) \in \text{Im } p$.

Finalement, $E = \operatorname{Im} p \oplus \operatorname{Ker}(p)$.

3) Soit p un projecteur de E et f un endomorphisme du même espace tel que $f(\operatorname{Im} p) \subset \operatorname{Im} p$ et $f(\operatorname{Ker} p) \subset \operatorname{Ker} p$. Afin de montrer que $f \circ p = p \circ f$ nous allons utiliser le théorème du préambule. Pour celà il nous faut vérifier les hypothèses, on sait que $E = \operatorname{Im} p \oplus \operatorname{Ker}(p)$. Montrons que $f \circ p = p \circ f$ sur $\operatorname{Ker} p$ et sur $\operatorname{Im} p$.

Soit $x \in \operatorname{Ker} p$, d'une part, $(f \circ p)(x) = f(0) = 0$. D'autre part, $f(x) \in \operatorname{Ker} p$ car $f(\operatorname{Ker} p) \subset \operatorname{Ker} p$ donc $(p \circ f)(x) = p(f(x)) = 0$. Donc $f \circ p = p \circ f$ sur $\operatorname{Ker} p$.

Soit $x \in \text{Im } p$, d'une part $(f \circ p)(x) = f(p(x)) = f(x)$ (nous avons déjà vu qu'un projecteur est égale à l'application identité sur son image). D'autre part $(p \circ f)(x) = p(f(x)) = f(x)$ car $f(x) \in \text{Im } p$ puisque f(Im p) = Im p. Conclusion, $f \circ g = g \circ f$.

Exercice 4 1) Remarquons que $E_1 \times E_2$ est bien un sous espace vectoriel de $E \times E$ donc parler de linéarité pour f n'est pas absurde.

Soit $x = (x_1, x_2) \in E_1 \times E_2$, $y = (y_1, y_2) \in E_1 \times E_2$ et $\lambda, \mu \in K$.

$$f(\lambda x + \mu y) = f((\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2))$$

= $\lambda x_1 + \mu y_1 + \lambda x_2 + \mu y_2$
= $\lambda (x_1 + x_2) + \mu (y_1 + y_2)$
= $\lambda f(x) + \mu f(y)$.

f est donc bien linéaire.

2) Soit $x = (x_1, -x_1)$, où $x_1 \in E_1 \cap E_2$,

 $f(x) = f((x_1, -x_1)) = x_1 - x_1 = 0$. Donc $\text{Ker } f \subset \{(x_1, -x_1) : x_1 \in E_1 \cap E_2\}$. Réciproquement, soit $x = (x_1, x_2) \in \text{Ker } f$,

f(x) = 0 donc $x_2 = -x_1$, donc $x_1 \in E_1 \cap E_2$ et $x_2 = -x_1$.

Conclusion, $\text{Ker } f = \{(x_1, -x_1) : x_1 \in E_1 \cap E_2\}.$

- 3)Considérons l'application $\varphi: E_1 \cap E_2 \to \operatorname{Ker} f, x \mapsto (-x, x)$. φ est bien définie d'après la question précédente. On vérifie très facilement que φ est linéaire, injective et surjective. Par conséquent $E_1 \cap E_2$ et $\operatorname{Ker} f$ sont isomorphes.
- 4) Montrons que $\operatorname{Im} f = E_1 + E_2$, soit $y \in \operatorname{Im} f$ donc il existe $x = (x_1, x_2) \in E_1 \times E_2$ tel que $y = f(x) = x_1 + x_2$, y s'écrit comme somme d'un élément de E_1 et d'un élément de E_2 donc $y \in E_1 + E_2$. Soit $y \in E_1 + E_2$, donc il existe $y_1 \in E_1$ et $y_2 \in E_2$ tel que $y = y_1 + y_2$, donc $y = f((y_1, y_2))$, finalement $y \in \operatorname{Im} f$.
- 5) Si E_1 et E_2 sont de dimension finie alors $E_1 \times E_2$ l'est également de dimension $\dim(E_1) + \dim(E_2)$, donc en appliquant le théorème du rang à f. On obtient, $\dim(E_1 \times E_1) = \operatorname{rg} f + \dim(\operatorname{Ker} f)$.

Or $\operatorname{rg} f = \dim(E_1 + E_2)$ d'après la question 4. Et $\dim(\operatorname{Ker} f) = \dim(E_1 \cap E_2)$ d'après la question 2. Finalement, $\dim(E_1) + \dim(E_2) = \dim(E_1 + E_2) + \dim(E_1 \cap E_2)$.