Feuille de TD 2 (bis): matrices

Exercice 1. rang d'une matrice en fonction d'un paramètre

Discuter suivant $\lambda \in \mathbb{C}$, le rang de la matrice,

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \lambda \end{pmatrix}$$

Exercice 2. Deux matrices qui commutent.

Soit $A, B \in M_n(K)$ tel que $AB = I + A + A^2$. Montrer que A est inversible puis que les matrices A et B commutent.

Exercice 3. Transposition.

Pour une matrice $A \in M_{n,p}(\mathbb{R})$, on définit la matrice transposée notée $A^{\perp} \in M_{p,n}(\mathbb{R})$ et définie par $(A^{\perp})_{i,j} = A_{j,i}$.

- 1. Interpréter cette définition en termes de lignes et de colonnes.
- 2. Soit

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Montrer que A est inversible d'inverse A^{\perp} .

Exercice 4. Trace d'une matrice : le retour...

Soit $A \in M_n(\mathbb{R})$. Montrer que si $tr(AA^{\perp}) = 0$ alors A = 0.

Exercice 5. Matrices nilpotentes.

Soit $A \in M_n(K)$, A est dite nilpotente si il existe un entier positif p tel que $A^p = 0$.

- 1. Montrer que si A est nilpotente alors I A est inversible et préciser son inverse.
- 2. Montrer que la somme de deux matrices nilpotentes est également une matrice nilpotente.