Suites de variables aléatoires.

- 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. Déterminer pour chacune des convergences suivantes à quelle condition sur la suite $(A_n)_{n\geq 1}$ elle a lieu.
 - a. La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge en probabilité vers 0.
 - b. La suite $(\mathbbm{1}_{A_n})_{n\geq 1}$ converge dans L^2 vers 0.
 - c. La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge presque sûrement vers 0.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires. Montrer que si la suite X_n converge simultanément vers deux variables aléatoires X et Y, alors X=Y presque sûrement, et ceci quel que soit le mode de convergence vers X et quel que soit le mode de convergence vers Y, parmi : convergence presque sûre, convergence dans L^p avec $p \in \{1, 2\}$, convergence en probabilité.
- **3.** Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soient $X, X_1, X_2, \ldots : (\Omega, \mathscr{F}, \mathbb{P}) \to \mathbb{R}$ des variables aléatoires réelles. On suppose que la suite $(X_n)_{n\geq 1}$ converge en probabilité vers X.
- a. Montrer qu'il existe une suite strictement croissante d'entiers $1 \leq n_1 < n_2 < \dots$ telle que pour tout $k \geq 1$ on ait

$$\mathbb{P}\left(|X_{n_k} - X| > \frac{1}{k}\right) \le \frac{1}{2^k}.$$

b. Pour tout $k \geq 1$, on pose $Y_k = X_{n_k}$ (on dit que la suite $(Y_k)_{k\geq 1}$ est extraite de la suite $(X_n)_{n>1}$). Montrer que la suite $(Y_k)_{k>1}$ converge presque sûrement vers X.

On a montré que d'une convergence en probabilité on pouvait extraire une convergence presque sûre.

4. Lemme de Borel-Cantelli. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(A_n)_{n\geq 1}$ une suite d'événements telle que

$$\sum_{n\geq 1} \mathbb{P}(A_n) < +\infty.$$

Montrer que $\mathbb{P}(\limsup A_n) = 0$.

On rappelle que $\limsup A_n := \bigcap_{k>1} \bigcup_{n>k} A_n = \{\omega \in \Omega : \{n : \omega \in A_n\} \text{ estinfini}\}.$

5. Soit X une variable aléatoire positive sur un espace de probabilités $(\Omega, \mathscr{F}, \mathbb{P})$.

a. Montrer que

$$\sum_{n \geq 0} n \mathbb{P}(n \leq X < n+1) < +\infty \Leftrightarrow \mathbb{E}[X] < +\infty.$$

b. Montrer que

$$\sum_{n\geq 1} \mathbb{P}(X\geq n) < +\infty \Leftrightarrow \mathbb{E}[X] < +\infty.$$

- **6.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires toutes de même loi.
- a. Montrer qu'on a $\frac{X_n}{n} \xrightarrow[n \to \infty]{P} 0$.
- b. Montrer que si $\mathbb{E}[|X_1|] < +\infty$, alors $\frac{X_n}{n} \xrightarrow[n \to \infty]{L^1} 0$. Étudier la réciproque.
- c. Montrer que si $\mathbb{E}[|X_1|] < +\infty$, alors $\frac{X_n}{n} \xrightarrow[n \to \infty]{p.s.} 0$. Étudier la réciproque.
- 7. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et toutes de carré intégrable.
 - a. Montrer que pour tout $n \geq 1$ et tout $a \in \mathbb{R}$, on a

$$\mathbb{E}[(X_n - a)^2] = (\mathbb{E}[X_n] - a)^2 + \operatorname{Var}(X_n).$$

b. En déduire que la suite $(X_n)_{n\geq 1}$ converge en moyenne quadratique vers une constante a si et seulement si on a les convergences

$$\lim_{n \to \infty} \mathbb{E}[X_n] = a \text{ et } \lim_{n \to \infty} \text{Var}(X_n) = 0.$$

- **8.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires. Montrer que si la suite $(X_n)_{n\geq 1}$ converge dans L^2 vers une variable aléatoire X, alors la suite $(X_n^2)_{n\geq 1}$ converge dans L^1 vers X^2 . La réciproque est-elle vraie?
- **9.** Lemme de Borel-Cantelli (suite). Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(A_n)_{n\geq 1}$ une suite d'événements indépendants telle que

$$\sum_{n\geq 1} \mathbb{P}(A_n) = +\infty.$$

On veut démontrer que $\mathbb{P}(\limsup A_n) = 1$.

- a. Montrer que pour tout réel x, on a l'inégalité $1 + x \le e^x$.
- b. Montrer que pour tous entiers n, m tels que $1 \le m \le n$, on a

$$\mathbb{P}\left(\bigcap_{k=m}^{n} A_{k}^{c}\right) \leq \exp\left(-\sum_{k=m}^{n} \mathbb{P}(A_{k})\right).$$

- c. En déduire que pour tout $m \geq 1$, on a $\mathbb{P}\left(\bigcap_{k=m}^{\infty}A_k^c\right)=0$, puis conclure.
- 10. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p\in]0,1[$. Montrer qu'avec probabilité 1, la suite $(X_n)_{n\geq 1}$ prend une infinité de fois la valeur 1 et une infinité de fois la valeur 0.
- **11.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées. On suppose que $\mathbb{E}[|X_1|] = +\infty$. On veut montrer que presque sûrement, la suite $\left(\frac{X_1+\ldots+X_n}{n}\right)_{n\geq 1}$ n'a pas de limite réelle.
- a. Montrer que si une suite $(x_n)_{n\geq 1}$ de réels est telle que la suite $\left(\frac{x_1+\ldots+x_n}{n}\right)_{n\geq 1}$ ait une limite réelle, alors

$$\lim_{n \to \infty} \frac{x_n}{n} = 0.$$

b. Montrer que $\sum_{n\geq 1} \mathbb{P}(|X_n| \geq n) = +\infty$ et conclure.